ELECTRONIC SUPPLEMENTARY INFORMATION

to

"Switching on" the single-molecule magnet properties within a series of dinuclear cobalt(III)-dysprosium(III) 2-pyridyloximate complexes⁺

C. D. Polyzou,^{*a*} E. S. Koumousi,^{*b,c,d,e*} Z. G. Lada,^{*g*} C. P. Raptopoulou,^{*g*} V. Psycharis,^{*g*} M. Rouzières,^{*b,c*} A. C. Tsipis, ^{**f*} C. Mathonière,^{**d,e*} R. Clérac^{**b,c*} and S. P. Perlepes^{**a,g*}

^aDepartment of Chemistry, University of Patras, 265 04 Patras, Greece. Email: <u>perlepes@patreas.upatras.gr</u>

^bCNRS, CRPP, UPR 8641, F-33600 Pessac, France. E-mail: <u>clerac@crpp-bordeaux.cnrs.fr</u>

^cUniv. Bordeaux, UPR 8641, F-33600 Pessac, France

^dCNRS, ICMCB, UPR 9048, F-33600 Pessac, France. E-mail: <u>corine.mathoniere@icmcb.cnrs.fr</u>

^eUniv. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France

^{*f*}Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece. E-mail: <u>attsipis@uoi.gr</u>

^{*g*}Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Platani, P.O. Box 1414, 265 04 Patras, Greece

^{*h*}Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10 Aghia Paraskevi Attikis, Greece

	1	2	3	4·3MeOH
Formula	$C_{18}H_{15}CoDyN_9O_{12}$	$C_{21}H_{21}CoDyN_9O_{12}$	$C_{36}H_{27}CoDyN_9O_{12}$	C ₂₁ H ₃₀ Co DyN ₁₂ O ₁₅
Fw	770.82	812.90	990.09	912.00
Space group	R ³	R3	R3c	P ³ c1
a (Å)	14.1257(3)	15.0503(2)	11.2364(2)	16.5137(2)
b (Å)	14.1257(3)	15.0503(2)	11.2364(2)	16.5137(2)
<i>c</i> (Å)	20.6905(4)	10.2997(1)	55.6273(10)	20.9946(5)
α (°)	90.00	90.00	90.00	90.00
<i>в</i> (°)	90.00	90.00	90.00	90.00
γ (°)	120.00	120.00	120.00	120.00
V (ų)	3575.4(2)	2020.44(6)	6082.37(19)	4958.23(13)
Ζ	6	3	6	4
<i>Т</i> (К)	160(2)	170(2)	160(2)	160(2)
Radiation		Cu Kα (1.	54178 Å)	
ρ _{calcd} (g cm⁻³)	2.148	2.004	1.637	1.222
μ (mm⁻¹)	22.812	20.224	13.570	11.104
Reflection collected	10087	6533	30781	48920
Independent reflections	1348 ($R_{int} = 0.0754$)	1486 (<i>R</i> _{int} = 0.0679)	2228 $(R_{int} = 0.0801)$	2819 (<i>B</i> _{int} = 0.0615)
Reflections with <i>l</i> > 2σ(<i>l</i>)	1283	1445	2145	2431
$R_1[I>2\sigma(I)]^a$	0.0348	0.0368	0.0423	0.0309
wR₂[I > 2σ(I)] ^{b,c}	0.0856	0.0713	0.1126	0.0866
(Δρ) _{max} /(Δρ) _{min} [e Å ⁻³]	1.410/-1.441	1.519/-0.663	0.983/-0.644	0.539/-0.567
${}^{a}R_{1} = \Sigma(F_{o} - F_{c})/\Sigma(F_{o}).$ ${}^{b}wR_{2} = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma[w(F_{o}^{2})^{2}]\}^{1/2}.$ ${}^{c}w = 1/[\sigma^{2}(F_{o}^{2}) + (\alpha P)^{2} + bP] \text{ and } P = [\max(F_{o}^{2}, 0) + 2F_{c}^{2}]]/3. \ \alpha = 0.0465, \ b = 15.5519 \text{ for } 1; \ \alpha = 0.0140, \ b = 0.0000 \text{ for } 2; \ \alpha = 0.0806, \ b = 4.3217 \text{ for } 3; \ \alpha = 0.0445, \ b = 3.1629 \text{ for } 4\cdot3\text{MeOH.}$				

Table S1. Crystallographic data for complexes $[CoDy(pao)_3(NO_3)_3]$ (1), $[CoDy(mepao)_3(NO_3)_3]$ (2), $[CoDy(phpao)_3(NO_3)_3]$ (3) and $[CoDy(NH_2pao)_3(NO_3)_3]$ ·3MeOH (4·3MeOH).

Table S2. Continuous Shape Measures (CShM) values for the possible coordination polyhedra of the 9-coordinate Dy ions in the molecular structures of 1, 2, 3 and 4·3MeOH.

Ideal polyhedron	1	2	3	4∙3MeOH
Enneagon	30.88332	32.88982	35.40640	33.33234
Octagonal pyramid	22.44352	24.84877	24.65017	23.83295
Heptagonal bipyramid	19.13731	18.25268	20.66390	19.86454
Johnson triangular cupola	9.74068	11.86441	13.48457	12.73433
Capped cube J8	11.21531	10.17419	11.78072	11.29538
Spherical-relaxed capped cube	10.16580	9.02410	10.50435	10.17170
Capped square antiprism J10	4.04342	3.62828	3.58005	3.50544
Spherical capped square antiprism	3.12865	2.72964	2.50406	2.55199
Tricapped trigonal prism J51	2.8226	2.88247	3.06133	2.64178
Spherical tricapped trigonal prism	3.13332	2.31202	2.02651	2.27077
Tridiminished icosahedron J63	14.07676	11.27019	12.92923	13.28582
Hula-hoop	12.16811	12.76749	13.07646	12.88460
Muffin	3.33347	2.90445	2.54333	2.65181

^aThe smallest values (in bold) define the best polyhedron. ^bChemically significant distortions give CShM values of 0.1 or higher, while values larger than about 3 indicate important distortions.

Interaction	D…A (Å)	H…A (Å)	D-H…A (°)	Symmetry operation of A
Complex 1				
C3-H3 O1	3.136	2.281	149.5	1/3+y,-1/3-x+y, 2/3+z
C4-H4 O13	3.283	2.425	150.1	1/3-y, -2/3-y, 1/3-z
Complex 2				
C1-H1 O12 ^a	3.159	2.538	123.1	<i>x, y,</i> 1+z
C4-H4 O1	3.168	2.317	148.8	2/3-y, 1/3+x-y, 1/3+z
C7 ^b -H7B O12	3.394	2.679	130.1	2/3-y, 1/3+x-y, 1/3+z
Complex 3				
C8-H8O11c	3.357	2.442	161.4	x, y, z
С10-Н10 О11	3.381	2.634	135.8	x, 1+y, z
C10-H10 O1	3.354	2.465	155.8	-x+y, 2-x, z
C2-H2 O11	3.382	2.551	146.5	1/3-y,2/3-x, 1/6+z
C2-H2 O12 ^a	3.109	2.462	125.4	-2/3+x, 2/3+x-y, 1/6+z
C1-H1013	3.271	2.478	140.9	1/3-y,2/3-x, 1/6+z
Complex 4·3MeOH				
N3 ^d -HB(N3) O1M	2.847	2.01	158	<i>y,-x+y,-z</i>
C3-H3 O11 ^{<i>a</i>}	3.216	2.56	127	x-y,- 1+x,-z
01M <i>°</i> –H(01M) 01	2.725	1.87	172	х, у, г
C4-H4 O11 ^a	3.231	2.68	119	<i>x-y,</i> -1+ <i>x,</i> - <i>z</i>

Table S3 H-bonding interactions in the crystal structures of 1, 2, 3 and 4.3MeOH.

^aThese H bonds are very weak and could not be considered. ^bThis is the methyl C atom of mepao⁻ not labelled in Fig. S1. ^cIntramolecular H bond. ^dThis is the amino nitrogen atom not labelled in Fig. 2. ^eLattice MeOH molecules. Abbreviations: A = acceptor, D = donor.

Figure S1. Optical reflectivity spectra for 1, 2, 3 and 4 at 289 K.

Figure S2. Partially labelled view of the molecular structure of complex $[CoDy(phpao)_3(NO_3)_3]$ (**3**). Symmetry operations used to generate equivalent atoms: (') -y+1, x-y+1, z; (") -x+y, -x+1, z. Colour scheme: Co, dark blue; Dy, dark pink; O, red; N, blue; C, grey.

Figure S3. Partially labelled view of the structure of the dinuclear complex that is present in **4**·3MeOH. Only the H atoms of the $-NH_2$ groups are shown. Symmetry operations to generate equivalent atoms: (') -x+y+1, -x+1, z; (") -y+1, x-y, z. Colour scheme: Co, dark blue; Dy, dark pink; O, red; N, blue; C, grey; H, white.

Figure S4. Side view of the intra- and inter-column inter-molecular interactions in $[CoDy(pao)_3(NO_3)_3]$ (1). The columns are situated along *c* formed by "dimers" as described in the text. The green, thick dashed lines represent the inter-dimer nitrato-nitrato O^{...}N interactions, and the turquoise, dashed lines the C_{aromatic}-H^{...}O_{oximato} and C_{aromatic}-H^{...}O_{non-coord.nitrato} H bonds. The green solid line indicates a π - π stacking interaction. Colour scheme: Co, dark blue; Dy, dark pink; O, red; N, blue; C, grey.

Figure S5. Top view of the 3D architecture in the crystal structure of $[CoDy(pao)_3(NO_3)_3]$ (1) viewed down the *c* axis. Colour scheme: Co, dark blue; Dy, dark pink; O, red; N, blue; C, grey.

Figure S6. (Top) View of the inter-molecular interactions in the crystal structure of $[CoDy(mepao)_3(NO_3)_3]$ (2). The intra-column C1-H1^{...}O12 H bonds are indicated by turquoise dashed lines, while the orange-brown dashed lines represent the C4-H4^{...}O1 and C7-H7B^{...}O12 interactions, see Table S3. (Bottom) Top view of the 3D architecture in the crystal structure of complex 2 viewed down the *c* axis. Colour scheme: Co, dark blue; Dy, dark pink; O, red; N, blue; C, grey.

Figure S7. View of the inter-molecular H-bonding interactions in the crystal structure of $[CoDy(phpao)_3(NO_3)_3]$ (**3**). The turquoise, bright green and orange-brown dashed lines represent the intra-molecular C8-H8^{...}O11, the inter-molecular intra-layer C10-H10^{...}O11 and C10-H10^{...}O1, and the inter-layer C2-H2^{...}O11, C2-H2^{...}O12 and C1-H1^{...}O13 H bonds. Colour scheme: Co, dark blue; Dy, dark pink; O, red; N, blue; C, grey.

Figure S8. View of the layers composed of the dinuclear {CoDy} complexes in the crystal structure of $[CoDy(phpao)_3(NO_3)_3]$ (**3**). These layers are formed though the C10-H10^{...}O11 and C10-H10^{...}O1 H bonds (bright green dashed lines). Dinuclear complexes lying in the layers below (A sites, yellow colour) and above (B sites, brown colour) the main layer are also shown. Colour scheme: Co, dark blue; Dy, dark pink; O, red; N, blue; C, grey.

Figure S9. Top view of three successive layers in the crystal structure of $[CoDy(phpao)_3(NO_3)_3]$ (3). The complexes coloured in yellow and brown form the layers, which lie below and above the middle layer. The intra-molecular and inter-layer H bonds are not shown for clarity. Colour scheme: Co, dark blue; Dy, dark pink; O, red; N, blue; C, grey.

Figure S10. Side view of three successive layers of complexes in the crystal structure of $[CoDy(phpao)_3(NO_3)_3]$ (**3**). The intra-molecular H bonds are not shown for clarity. Colour scheme: Co, dark blue; Dy, dark pink; O, red; N, blue; C, grey.

Figure S11. H-bonding interactions in the crystal structure of $[CoDy(NH_2pao)_3(NO_3)_3]$ ·3MeOH (**4**·3MeOH). The dark green solid lines indicate the ordered C1M-O1M MeOH lattice molecules. Colour scheme: Co, dark blue; Dy, dark pink; O, red; N, blue; C, grey.

Figure S12. Field dependence of magnetisation for complex $[CoDy(pao)_3(NO_3)_3]$ (1) plotted as *M* versus *H* (left; solid lines are visual guides) or *M* versus *H/T* (right) at the indicated temperatures, scanning at 80 – 400 Oe.min⁻¹ for *H* < 1 T and 500 – 2500 Oe.min⁻¹ for *H* > 1 T.

Figure S13. Field dependence of magnetisation for complex $[CoDy(mepao)_3(NO_3)_3]$ (2) plotted as *M* versus *H* (left; solid lines are visual guides) or *M* versus *H/T* (right) at the indicated temperatures, scanning at 80 – 400 Oe.min⁻¹ for *H* < 1 T and 500 – 2500 Oe.min⁻¹ for *H* > 1 T.

Figure S14. Field dependence of magnetisation for complex $[CoDy(phpao)_3(NO_3)_3]$ (**3**) plotted as *M* versus *H* (left; solid lines are visual guides) or *M* versus *H/T* (right) at the indicated temperatures, scanning at 80 – 400 Oe.min⁻¹ for *H* < 1 T and 500 – 2500 Oe.min⁻¹ for *H* > 1 T.

Figure S15. Field dependence of magnetisation for complex $[CoDy(NH_2pao)_3(NO_3)_3]$ (a dried sample of $4 \cdot 3MeOH$) plotted as *M* versus *H* (left; solid lines are visual guides) or *M* versus *H*/*T* (right) at the indicated temperatures, scanning at 80 – 400 Oe.min⁻¹ for *H* < 1 T and 500 – 2500 Oe.min⁻¹ for *H* > 1 T.

Figure S16. Frequency dependence of the real (χ' , top) and imaginary (χ'' , bottom) components of the *ac* susceptibility, at the indicated *dc* fields (between 0 and 1 T) for [CoDy(mepao)₃(NO₃)₃] (**2**) at 1.8 K. Solid lines and arrows are visual guides.

Figure S17. Frequency dependence of the real (χ' , left) and imaginary (χ'' , right) components of the *ac* susceptibility, at the indicated *dc* fields (between 0 and 0.3 T) for [CoDy(mepao)₃(NO₃)₃] (**2**) at 1.8 K. The solid lines are the best fits of the main relaxation mode seen in the experimental data (Figure S16) to the generalized Debye model.

Figure S18. Field dependence of the parameters (α , χ_0 , χ_{∞} , χ_0 - χ_{∞} , and the characteristic frequency, v) deduced from the Debye generalized fits of the experimental data for complex [CoDy(mepao)₃(NO₃)₃] (**2**) at 1.8 K (Figure S17). Solid lines are visual guides.

Figure S19. Frequency dependence of the real (χ' , left) and imaginary (χ'' , right) components of the *ac* susceptibility, at the indicated temperatures (between 1.8 and 3 K) for [CoDy(mepao)₃(NO₃)₃] (**2**) at 600 Oe. The solid lines at the best fit of experimental data to the generalized Debye model.

Figure S20. Temperature dependence of the parameters (α , χ_0 , χ_{∞} , χ_0 - χ_{∞} , and the characteristic frequency, v) deduced from the Debye generalized fits of the experimental data for complex [CoDy(mepao)₃(NO₃)₃] (**2**) at 600 Oe (Figure S19). Solid lines are visual guides.

Figure S21. Temperature dependence of the real (χ' , top) and imaginary (χ'' , bottom) components of the *ac* susceptibility at different *ac* frequencies (between 10 and 10000 Hz) for [CoDy(mepao)₃(NO₃)₃] (**2**) with a 600-Oe *dc* field between 1.8 and 10 K. Solid lines are visual guides.

Figure S22. Ground-state magnetic anisotropy axis (dashed line) for the Dy ion that is present in the molecule of **1**.

Figure S23. Ground-state magnetic anisotropy axis (dashed line) for the Dy ion that is present in the molecule of **2**.

Figure S24. Ground-state magnetic anisotropy axis (dashed line) for the Dy ion that is present in the molecule of **3**.

Figure S25. Ground-state magnetic anisotropy axis (dashed line) for the Dy ion that is present in the molecule of **4**.

ALTERNATIVE IDEAS ABOUT THE NATURE OF THE MAGNETIZATION RELAXATION IN COMPLEX [CoDy(mepao)₃(NO₃)₃] (2)

As shown above, from the fit of the *ac* data, the field and temperature dependence of the relaxation time can be deduced. Now the question is : can we fit or understand this dependence? In the text, we talk about two relaxation processes: Quantum tunnelling of the Magnetization (minimized by applying a *dc* magnetic field) and Orbach relaxation (thermally activated but field independent). Unfortunately, it is impossible to fit the data with these two mechanisms!!!

$$\tau^{-1} = \tau_{QTM}^{-1} + \tau_{Orbach}^{-1}$$
$$\tau^{-1} = \frac{B_1}{1 + B_2 H^2} + K$$

with *K* being a constant in field:

Thus we need to include other pathways of relaxation that explain the fast decrease of the relaxation time above 0.06 T. The only process that can do that is a direct process that has a relaxation time in H^4 :

$$\tau_{Direct}^{-1} = ATH^4$$

Then we tried to fit with:

$$\tau^{-1} = \tau_{QTM}^{-1} + \tau_{Direct}^{-1} + \tau_{Orbach}^{-1}$$

And it is working... with (four parameters) $B_1 = 2532 \text{ s}^{-1}$, $B_2 = 11797 \text{ T}^{-2}$, $A = 3.25 \text{ 10}^6 \text{ K}^{-1}\text{T}^{-4}\text{s}^{-1}$ and $K = 6477 \text{ s}^{-1}$. Then we tried to fit the temperature dependence accordingly fixing these parameters:

$$\tau^{-1} = \tau_{QTM}^{-1} + \tau_{Direct}^{-1} + \tau_{Orbach}^{-1}$$

$$\tau^{-1} = \frac{B_1}{1 + B_2 H^2} + ATH^4 + \tau_0^{-1} exp\left[\cos\left(-\frac{\Delta}{k_B T}\right)\right]$$

In agreement with the text of the main ms., this is working with $\Delta/k_{\rm B} = 15.2$ K (a total of 5 fitting parameters) which implies (based on K = 6477 s⁻¹) $\tau_0 = 3.3 \ 10^{-8}$ s. But this τ_0 value is a little suspicious. The time to reverse the magnetization from the phonon should be around 10^{-10} to 10^{-12} s. So we tried a different approach changing our point of view of the problem. Can we fit the data with only two relaxation processes?

Obviously, we need the direct process to explain the field dependence above 0.06 T. At low field, we can try to replace QTM with a Raman process that has almost the same field dependence:

$$\tau^{-1} = \tau_{Raman}^{-1} + \tau_{Direct}^{-1}$$

$$\tau^{-1} = C \frac{1 + B_1 H^2}{1 + B_2 H^2} T^n + AT H^4$$

We can fit the field dependence without any problem!

The best set of the four parameters is then $B_1 = 897 \text{ T}^{-2}$, $B_2 = 2532 \text{ T}^{-2}$, $CT^n = 18274 \text{ s}^{-1}$ and $A = 3.25 \text{ 10}^6 \text{ K}^{-1}\text{T}^{-4}\text{s}^{-1}$. Fixing these four parameters, only *n* is an additional parameter (fifth one) to fit the temperature dependence:

And this is working with n = 7 (which is very much what we expect for Raman processes) leading to $C = 305.2 \text{ s}^{-1} \text{ K}^{-7}$.

In conclusion, based on the above mentioned, it is difficult to decide which model is the best one to describe the magnetization relaxation in **2**. May be none! Both have five (5) parameters. The second model (Direct Raman) has a *n* number that is making sense and involves only two relaxation processes. Thus, we might favour this. Our hypothesis is supported by the fact that the τ_0 value in the first approach (QTM+ Direct+ Orbach) is a little too high.

Figure S26. Equilibrium geometries of **1-4** with selected structural parameters optimized at the BP86/SDD(Co,Dy) \cup 6-31G(d,p)(E) (E = main group element) level in the gas phase.

Computational Details. All calculations were performed in gas phase using the Gaussian09, D.01 program suite. The geometries of **1** - **4** were fully optimized, without symmetry constraints, employing DFT electronic structure calculations using the BP86 pure functional1 as implemented in the Gaussian09, D.01 program suite. For the geometry optimizations we used the SDD ECP basis set¹⁻³ for Co and Dy metal centers and the 6-31G(d,p) basis set for all non metal elements, E. Hereafter the computational protocol used in DFT calculations is abbreviated as BP86/SDD(Co,Dy) \cup 6-31G(d,p)(E) (E = main group element). The stationary points were identified as local minima by the absence of imaginary frequencies ($N_{\text{Imag}} = 0$). The natural bond orbital (NBO) population analysis was performed using Weinhold's methodology.

Table S4. Cartesian coordinates and energies of 1 - 4 at the BP86/SDD(Co,Dy) \cup 6-31G(d,p)(E) (E = main group element) level.

Dy	2.343150000	-0.000105000	0.000340000
0	0.562384000	-0.945016000	-1.483895000
0	0.562181000	-0.813380000	1.559990000
0	0.562338000	1.757368000	-0.075439000
0	2.379483000	1.093240000	-2.130918000
0	2.380235000	-2.392564000	0.118520000
0	2.379317000	1.298064000	2.013468000
0	3.879906000	-0.461047000	-1.747085000
0	3.879521000	-1.282768000	1.273891000
0	3.877047000	1.746487000	0.473963000
Со	-1.632806000	-0.000292000	-0.000131000
Ν	-0.528566000	-0.285620000	-1.538998000
Ν	-0.528921000	-1.190474000	1.016554000
Ν	-0.528942000	1.475274000	0.522528000
Ν	3.372617000	0.388615000	-2.590923000
Ν	3.372881000	-2.438486000	0.959324000
Ν	3.370411000	2.050991000	1.632357000
Ν	-2.672796000	1.128271000	-1.263018000
Ν	-2.673098000	-1.657907000	-0.346188000
Ν	-2.673561000	0.529048000	1.608276000
С	-0.939328000	0.306955000	-2.654795000
С	-0.940127000	-2.452920000	1.061424000
С	-0.940599000	2.145632000	1.593035000
0	3.792506000	0.511949000	-3.736296000
0	3.793062000	-3.492057000	1.424975000

0	3.789022000	2.982011000	2.311609000
С	-3.769648000	1.881585000	-1.027723000
С	-2.125186000	1.105307000	-2.527878000
С	-3.769899000	-1.830494000	-1.116347000
С	-2.125976000	-2.741900000	0.306425000
С	-3.770321000	-0.051609000	2.142956000
С	-2.126563000	1.636362000	2.220611000
С	-4.388351000	2.640974000	-2.025708000
С	-2.706229000	1.852565000	-3.578096000
С	-4.389126000	-3.074237000	-1.274787000
С	-2.707568000	-4.024810000	0.184620000
С	-4.389572000	0.433218000	3.299209000
С	-2.708237000	2.172574000	3.392385000
С	-3.841464000	2.622682000	-3.323220000
С	-3.842800000	-4.188840000	-0.609831000
С	-3.843388000	1.566578000	3.931782000
Н	-0.322177000	0.249955000	-3.554107000
Н	-0.323293000	-3.203389000	1.560622000
Н	-0.323996000	2.953367000	1.993354000
Н	-4.148855000	1.865213000	-0.002354000
н	-4.148809000	-0.934211000	-1.614914000
Н	-4.149159000	-0.931660000	1.616262000
Н	-5.272369000	3.236180000	-1.784871000
Н	-2.248065000	1.822675000	-4.570239000
Н	-5.273135000	-3.163028000	-1.910715000
Н	-2.249868000	-4.869162000	0.706866000
Н	-5.273486000	-0.073172000	3.694209000
Н	-2.250614000	3.047155000	3.862334000
Н	-4.297999000	3.210525000	-4.125337000
н	-4.299775000	-5.177238000	-0.717616000
н	-4.300429000	1.967577000	4.841556000

Sum of electronic and zero-point Energies=	-3120.738965
Sum of electronic and thermal Energies=	-3120.700200
Sum of electronic and thermal Enthalpies=	-3120.699256
Sum of electronic and thermal Free Energies=	-3120.815402

Dy	-2.321332000	-0.000221000	-0.000134000
0	-0.574661000	1.660443000	-0.567180000
0	-0.574673000	-0.339869000	1.721683000

0	-0.574670000	-1.321572000	-1.154409000
0	-2.414740000	0.438767000	-2.362539000
0	-2.414313000	1.826335000	1.560782000
0	-2.415095000	-2.265403000	0.801322000
0	-3.873398000	1.454271000	-1.078349000
0	-3.873447000	0.206989000	1.798503000
0	-3.872970000	-1.661402000	-0.721116000
Со	1.619172000	-0.000076000	0.000198000
Ν	0.528175000	1.186707000	-1.025138000
Ν	0.527907000	0.294058000	1.540491000
Ν	0.528076000	-1.481387000	-0.515007000
Ν	-3.372573000	1.315682000	-2.267122000
Ν	-3.372336000	1.305736000	2.272607000
Ν	-3.372493000	-2.621426000	-0.006236000
Ν	2.650277000	-0.079278000	-1.685900000
Ν	2.649601000	1.500239000	0.774635000
Ν	2.650256000	-1.420740000	0.911870000
С	0.933153000	1.472630000	-2.265002000
С	0.932254000	1.225243000	2.407901000
С	0.932876000	-2.698072000	-0.142542000
0	-3.756516000	1.972808000	-3.230803000
0	-3.756190000	1.812144000	3.323379000
0	-3.756261000	-3.784620000	-0.093539000
С	3.738358000	-0.829716000	-1.964196000
С	2.125153000	0.751330000	-2.655078000
С	3.737282000	2.117189000	0.263863000
С	2.123885000	1.924306000	1.978286000
С	3.738442000	-1.286824000	1.700855000
С	2.124736000	-2.675283000	0.677342000
С	0.103627000	2.362418000	-3.140075000
С	0.102415000	1.538161000	3.615823000
С	0.103448000	-3.900840000	-0.475748000
Н	4.094259000	-1.471352000	-1.153851000
С	4.379175000	-0.798221000	-3.206492000
С	2.732905000	0.822192000	-3.930524000
Н	4.093484000	1.736297000	-0.696896000
С	4.377111000	3.178021000	0.912094000
С	2.730647000	2.994112000	2.677159000
Н	4.094809000	-0.264374000	1.851131000
С	4.378855000	-2.378575000	2.294899000
С	2.732031000	-3.815380000	1.253945000

Н	-0.816383000	1.832578000	-3.448629000
Н	0.654809000	2.693635000	-4.032371000
Н	-0.217335000	3.247880000	-2.567534000
Н	-0.817253000	2.070812000	3.311110000
Н	0.653685000	2.144727000	4.349219000
Н	-0.219199000	0.599607000	4.095923000
Н	-0.816585000	-3.903533000	0.137356000
Н	0.654883000	-4.839101000	-0.316812000
Н	-0.217596000	-3.847445000	-1.528790000
Н	5.255412000	-1.426628000	-3.382712000
С	3.860559000	0.047054000	-4.204532000
Н	2.303355000	1.474633000	-4.693796000
Н	5.253056000	3.645413000	0.456023000
С	3.857901000	3.619682000	2.142899000
Н	2.300657000	3.328918000	3.623624000
Н	5.255174000	-2.217180000	2.927162000
С	3.859721000	-3.665384000	2.062225000
Н	2.302162000	-4.802529000	1.070813000
Н	4.331167000	0.094575000	-5.191371000
н	4.327775000	4.451057000	2.677328000
Н	4.330017000	-4.543846000	2.514670000

Sum of electronic and zero-point Energies=	-3238.629778
Sum of electronic and thermal Energies=	-3238.586253
Sum of electronic and thermal Enthalpies=	-3238.585309
Sum of electronic and thermal Free Energies=	-3238.709939

Dy	2.360180000	-0.018712000	-0.018344000
0	0.579780000	1.111997000	-1.325947000
0	0.563493000	-1.699829000	-0.300482000
0	0.588732000	0.581710000	1.619662000
0	2.571138000	2.287637000	0.518893000
0	2.511335000	-0.742628000	-2.278574000
0	2.566836000	-1.609943000	1.724172000
0	4.000299000	1.467587000	-0.927120000
0	3.980728000	-1.565214000	-0.875837000
0	4.045330000	0.007124000	1.709664000
Со	-1.644466000	0.017808000	0.006678000
Ν	-0.561894000	1.375451000	-0.815823000
Ν	-0.583684000	-1.384242000	-0.768010000

Ν	-0.564387000	0.032523000	1.594393000
Ν	3.576707000	2.507668000	-0.288347000
Ν	3.527103000	-1.543831000	-2.084924000
Ν	3.596347000	-1.044022000	2.304691000
Ν	-2.711904000	1.584538000	0.579129000
Ν	-2.732388000	-0.262564000	-1.624485000
Ν	-2.733721000	-1.245164000	1.076129000
С	-1.099606000	2.605504000	-0.861084000
С	-1.143846000	-2.041673000	-1.796286000
С	-1.112033000	-0.533867000	2.682589000
0	4.060228000	3.626883000	-0.432639000
0	3.991526000	-2.233140000	-2.989086000
0	4.072583000	-1.486293000	3.346763000
С	-3.772356000	1.629592000	1.416014000
С	-2.290961000	2.737173000	-0.046488000
С	-3.787854000	0.451384000	-2.075074000
С	-2.334528000	-1.390978000	-2.306711000
С	-3.805482000	-1.975513000	0.695300000
С	-2.315071000	-1.286310000	2.387828000
С	-4.480115000	2.807043000	1.673852000
С	-2.970665000	3.958863000	0.173559000
С	-4.513800000	0.087535000	-3.212876000
С	-3.033663000	-1.810586000	-3.463322000
С	-4.526933000	-2.776814000	1.584738000
С	-3.007886000	-2.078488000	3.334296000
С	-4.067293000	3.991208000	1.035164000
С	-4.125474000	-1.068751000	-3.914802000
С	-4.115723000	-2.823434000	2.929907000
Н	-4.053772000	0.684181000	1.885341000
Н	-4.050172000	1.338610000	-1.494235000
Н	-4.084860000	-1.904565000	-0.358379000
Н	-5.328702000	2.789994000	2.361982000
Н	-2.608399000	4.858161000	-0.329620000
Н	-5.357514000	0.701476000	-3.537146000
Н	-2.689653000	-2.704710000	-3.988051000
Н	-5.384437000	-3.350391000	1.224724000
Н	-2.646687000	-2.099462000	4.364938000
Н	-4.594159000	4.933110000	1.216639000
Н	-4.667365000	-1.381948000	-4.812553000
Н	-4.652687000	-3.444111000	3.653881000
С	-0.568732000	-3.269081000	-2.405487000

С	-1.324212000	-4.464175000	-2.378962000
С	0.703448000	-3.264379000	-3.014236000
С	-0.810574000	-5.638262000	-2.949253000
Н	-2.307157000	-4.474562000	-1.893990000
С	1.212281000	-4.443700000	-3.578009000
Н	1.287271000	-2.339483000	-3.047486000
С	0.460239000	-5.629396000	-3.547791000
Н	-1.399206000	-6.561113000	-2.916531000
Н	2.206437000	-4.425183000	-4.034333000
Н	0.864373000	-6.547615000	-3.986785000
С	-0.498160000	3.742231000	-1.605611000
С	-1.235407000	4.343748000	-2.651575000
С	0.783157000	4.236899000	-1.285081000
С	-0.695107000	5.421380000	-3.368824000
Н	-2.225547000	3.952634000	-2.912560000
С	1.318826000	5.311508000	-2.010099000
Н	1.353477000	3.782743000	-0.469135000
С	0.584532000	5.905031000	-3.049800000
Η	-1.270021000	5.875498000	-4.182738000
Н	2.319652000	5.673514000	-1.756742000
н	1.009483000	6.741586000	-3.614367000
С	-0.508822000	-0.467112000	4.038681000
С	-1.245215000	0.129497000	5.088247000
С	0.774639000	-0.990335000	4.300682000
С	-0.702616000	0.204280000	6.379587000
Н	-2.236354000	0.551124000	4.884814000
С	1.312303000	-0.907536000	5.593491000
Н	1.345111000	-1.463237000	3.495423000
С	0.578668000	-0.312757000	6.632974000
Н	-1.276998000	0.675518000	7.184098000
Н	2.314250000	-1.307457000	5.775509000
Н	1.005307000	-0.248190000	7.639439000

Sum of electronic and zero-point Energies=	-3813.663932
Sum of electronic and thermal Energies=	-3813.610722
Sum of electronic and thermal Enthalpies=	-3813.609778
Sum of electronic and thermal Free Energies=	-3813.755821

Dy	2.263212000	-0.000104000	0.000328000
0	0.545713000	-0.952051000	-1.459015000
0	0.545779000	-0.786873000	1.554431000

0	0.545737000	1.738938000	-0.095150000
0	2.502281000	0.788862000	-2.300684000
0	2.502358000	-2.387066000	0.467954000
0	2.502853000	1.599370000	1.833018000
0	3.893875000	-0.750058000	-1.591074000
0	3.894811000	-1.002977000	1.444576000
0	3.894108000	1.753227000	0.145107000
Со	-1.704164000	-0.000128000	0.000115000
Ν	-0.571744000	-0.283011000	-1.515495000
Ν	-0.571642000	-1.170697000	1.003261000
Ν	-0.571696000	1.453626000	0.512648000
Ν	3.482020000	-0.033744000	-2.582838000
Ν	3.482970000	-2.220059000	1.320499000
Ν	3.482517000	2.254691000	1.261037000
Ν	-2.717594000	1.111785000	-1.283717000
Ν	-2.717142000	-1.668286000	-0.320923000
Ν	-2.717544000	0.556106000	1.604899000
С	-0.865514000	0.423343000	-2.608349000
С	-0.865111000	-2.470392000	0.938271000
C	-0.865232000	2.047183000	1.670660000
0	3.949988000	-0.118894000	-3.714239000
0	3.951500000	-3.157232000	1.959580000
0	3.950374000	3.277544000	1.752127000
C	-3.857161000	1.805753000	-1.078939000
С	-2.117578000	1.151182000	-2.521429000
С	-3.856175000	-1.838536000	-1.024988000
С	-2.116956000	-2.759540000	0.264233000
С	-3.857070000	0.031829000	2.103598000
С	-2.117398000	1.608396000	2.257636000
н	-4.275216000	1.747988000	-0.070129000
С	-4.473524000	2.560846000	-2.083956000
С	-2.697970000	1.882446000	-3.581170000
Н	-4.274265000	-0.936239000	-1.479805000
С	-4.471937000	-3.086726000	-1.176619000
С	-2.696731000	-4.043189000	0.160635000
Н	-4.275045000	-0.812908000	1.549030000
С	-4.473301000	0.524818000	3.260055000
С	-2.697690000	2.160708000	3.420735000
Н	-5.392836000	3.109181000	-1.865053000
С	-3.880907000	2.590903000	-3.358937000
Н	-2.227200000	1.873330000	-4.567599000
Н	-5.390816000	-3.171804000	-1.761549000
С	-3.879188000	-4.205583000	-0.564691000
Н	-2.225859000	-4.892681000	0.662034000
Н	-5.392546000	0.061128000	3.625706000
C	-3.880566000	1.614028000	3.923326000
H	-2.226862000	3.019562000	3.905969000

Н	-4.339519000	3.162458000	-4.171570000
Н	-4.337286000	-5.195343000	-0.653530000
Н	-4.339062000	2.032096000	4.824646000
Ν	-0.033198000	2.991539000	2.236685000
Н	-0.093259000	3.024520000	3.255401000
Н	0.948359000	2.826361000	1.950179000
Ν	-0.033432000	-3.432772000	1.473610000
Н	-0.093539000	-4.331617000	0.993057000
Н	0.948194000	-3.102323000	1.473937000
Ν	-0.033768000	0.441656000	-3.709459000
Н	-0.093767000	1.307738000	-4.246852000
Н	0.947814000	0.275866000	-3.423506000
nd zero-point Energies3286 80/1/25			

Sum of electronic and zero-point Energies=	-3286.804425
Sum of electronic and thermal Energies=	-3286.761938
Sum of electronic and thermal Enthalpies=	-3286.760994
Sum of electronic and thermal Free Energies=	-3286.881801

References of the ESI

- 1. A. Bergner, M. Dolg, W. Kuechle, H. Stoll and H. Preuss, *Mol. Phys.*, 1993, **80**, 1431.
- 2. M. Kaupp, P. v. R. Schleyer, H. Stoll and H. Preuss, J. Chem. Phys., 1991, 94, 1360.
- 3. M. Dolg, H. Stoll, H. Preuss and R.M. Pitzer, J. Phys. Chem., 1993, 97, 5852.