Dissimilar Catalytic Behavior of Molecular or Colloidal

Palladium Systems with a New NHC Ligand

Fernando Gómez-Villarraga^[a,1], Jonathan De Tovar^[a,1], Miguel Guerrero^[b,c], Pau Nolis^[d], Teodor Parella,^[d] Pierre Lecante,^[e] Nuria Romero^[a], Lluís Escriche^[a], Roger Bofill^[a], Josep Ros^[a], Xavier Sala^[a], Karine Philippot^{[b,c]*}, and Jordi García-Antón^{[a]*}.

- [a] Dr. F. Gómez-Villarraga, J. De Tovar, Dr. N. Romero, Dr. L. Escriche, Dr. R. Bofill Dr. J. Ros, Dr. X. Sala, Dr. J. García-Antón Departament de Química, Unitat de Química Inorgànica, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain. Fax: (+34) 93 581 3101
 *E-mail: Jordi.GarciaAnton@uab.es
 [b] Dr. M. Guerrero, Dr. K. Philippot
- CNRS; LCC (Laboratoire de Chimie de Coordination du CNRS), 205, route de Narbonne, F-31077
 Toulouse, France
 Fax: (+33) 5 61553003
 *E-mail: Karine.Philippot@lcc-toulouse.fr
- ^[c] Université de Toulouse; UPS, INPT ; LCC ; F-31077 Toulouse, France
- ^[d] Servei de Ressonància Magnètica Nuclear (SeRMN), Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
- ^[e] CNRS, CEMES (Centre d'Elaboration de Matériaux et d'Etudes Structurales), 29 rue J. Marvig, F-31055 Toulouse, France
- ^[1] These authors equally contributed to this work.

Supplementary information

Supplementary Information

Tables:

Table S1. Crystallographic data for C2.

Table S2. Selected bond lengths (Å) and bond angles (deg) for C2.

Figures:

Figure S1. 1D and 2D NMR spectra (360 MHz, 298K, CDCl₃) for 1-[2-(3,5dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-1-ium chloride (**HLCl**): (a) ¹H-NMR, (b) ¹³C{¹H}-NMR, (c) HSQC NMR, (d) COSY NMR.

Figure S2. 1D and 2D NMR spectra (360 MHz, 298K, dmso-d₆) for 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-1-ium chloride (**HLCl**): (a) ¹H-NMR, (b) ¹³C{¹H}-NMR, (c) HSQC NMR, (d) COSY NMR.

Figure S3. ESI-MS spectrum of 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-1-ium chloride (**HLCl**).

Figure S4 Infrared spectrum of 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-1-ium chloride (**HLCI**).

Figure S5. 1D and 2D NMR spectra (400 MHz, 298K, CDCl₃) for 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-2-ylidene (L): (a) ¹H-NMR, (b) ¹³C{¹H}-NMR, (c) HSQC NMR, (d) COSY NMR.

Figure S6. Infrared spectrum of 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-2-ylidene (L).

Figure S7. SEM-FEG analyses of the Pd materials produced with (a) [HLCl]/[Pd] = 0.3; (b) [HLCl]/[Pd] = 0.5; (c) [HLCl]/[Pd] = 1.0; (d) [L]/[Pd] = 0.1.

Figure S8. Infrared spectrum of N1 and N2.

Figure S9. 1D and 2D NMR spectra (360 MHz, 298K, CDCl₃) for C_{Ag} : (a) ¹H-NMR, (b) ¹³C{¹H}-NMR, (c) HSQC NMR, (d) COSY NMR.

Figure S10. ESI-MS spectrum of CAg.

Figure S11. Infrared spectrum of CAg.

Figure S12. 1D and 2D NMR spectra (600 MHz, 298K, CDCl₃) for C1: (a) ¹H-NMR, (b) ¹³C{¹H}-NMR, (c) COSY NMR, (d) ROESY NMR, (e) HSQC NMR, (f) HMBC NMR.

Figure S13. HR-ESI-MS spectrum of C1; (top) experimental, (bottom) simulated.

Figure S14. Infrared spectrum of C1.

Figure S15. 1D and 2D NMR spectra (360 MHz, 298K, dmso-d₆) for C2: (a) ¹H-NMR, (b) $^{13}C{^{1}H}$ -NMR, (c) HSQC NMR, (d) COSY NMR.

Figure S16. ESI-MS spectrum of C2.

Figure S17. Infrared spectrum of C2.

Figure S18. HR-TEM micrographs of Pd nanoparticles (a) N1 and (b) N2 after catalytic experiments.

	C2			
Molecular Formula	$C_{18}H_{23}Cl_3N_4Pd$			
Formula weigh	508.15			
Temperature (K)	180(2)			
Wavelength (Å)	0.71073			
System, space group	Orthorhombic, P 21 21 21			
Unit cell dimensions				
a (Å)	11.9601(3)			
b (Å)	12.4291(3)			
c (Å)	13.7982(3)			
α (°)	90			
β (°)	90			
$\gamma \begin{pmatrix} o \\ z \end{pmatrix}$	90			
U (Å ³)	2051.15(8)			
Z	4			
D_{calc} (g cm ⁻³)	1.646			
μ (mm ⁻¹)	1.305			
F(000)	1024			
Crystal size (mm ³)	0.18x0.08x0.02			
	-16<=h<=14,			
hkl ranges	-17<=k<=16,			
	-17<=1<=16			
2 θ Range (°)	3.35 to 25.35			
Reflections collected /	31319 / 5805 /			
unique / [R _{int}]	[R(int) = 0.0302]			
Completeness to A				
$(\theta = 30, 10^{\circ})$	97.5 %			
Absorption correction	Semi-empirical			
Data/restrains/parameters	5805 / 0 / 238			
$Goodness-of-fit on F^2$	1 016			
Final R indices $[I > 2 \sigma(I)]$	R1 = 0.0239 wR2 = 0.0467			
R indices (all data)	R1 = 0.0308 wR2 = 0.0492			
Largest diff. peak and hole (e Å ⁻³)	0.887 and -0.303			

 Table S1. Crystallographic data for C2.

C2	
Pd - N(1)	2.0293(14)
Pd - Cl(1)	2.3102(6)
Pd - Cl(2)	2.2969(5)
Pd - Cl(3)	2.2991(5)
N(1) - Pd - Cl(1)	88.15(5)
N(1) - Pd - Cl(2)	179.24(6)
N(1) - Pd - Cl(3)	90.44(4)
Cl(1) - Pd - Cl(2)	91.816(19)
Cl(1) - Pd - Cl(3)	178.46(2)
Cl(2) - Pd - Cl(3)	89.587(19)

Table S2. Selected bond lengths (\AA) and bond angles (deg) for C2.

Figure S1. 1D and 2D NMR spectra (360 MHz, 298K, CDCl₃) for 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-1-ium chloride (HLCl): (a) 1 H-NMR, (b) 13 C{ 1 H}-NMR, (c) HSQC NMR, (d) COSY NMR.

(c)

Figure S2. 1D and 2D NMR spectra (360 MHz, 298K, dmso-d₆) for 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-1-ium chloride (HLCl): (a) 1 H-NMR, (b) 13 C{ 1 H}-NMR, (c) HSQC NMR, (d) COSY NMR.

Ó

ppm

Figure S3. ESI-MS spectrum of 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-1-ium chloride (**HLCI**).

Figure S4. Infrared spectrum of 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-1-ium chloride (**HLCl**).

Figure S5. 1D and 2D NMR spectra (400 MHz, 298K, CDCl₃) for $1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-2-ylidene (L): (a) ¹H-NMR, (b) ¹³C{¹H}-NMR, (c) HSQC NMR, (d) COSY NMR.$

(c)

Figure S6. Infrared spectrum of 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-2-ylidene (L).

Figure S7. SEM-FEG analyses of the Pd materials produced with (a) [L]/[Pd] = 0.1; (b) [HLCl]/[Pd] = 0.3; (c) [HLCl]/[Pd] = 0.5; (d) [HLCl]/[Pd] = 1.0.

Figure S8. Infrared spectrum of (a) N1 and (b) N2.

(a)

	L	N1	LHCI	N2
v (C-H)	3033, 2960	3026, 2939	3040, 2978	3019, 2960
(v (C=C), v (C=N))ar	1552	1564	1552	1563
(δ(C=C), δ (C=N))ar	1454	1462	1455	1456
δ (C-H)ip	1015	-	1160	1137
δ (C-H)00p	700	700	703	-

Figure S9. 1D and 2D NMR spectra (360 MHz, 298K, CDCl₃) for Chloro[(*S*)-3-(2-(3,5-dimethyl-1*H*-pyrazol-1-yl)ethyl)-1-(1-phenylethyl)-1*H*-imidazol-2-ylidiene)]silver(I) (C_{Ag}): (a) ¹H-NMR, (b) ¹³C{¹H}-NMR, (c) HSQC NMR, (d) COSY NMR.

(d)

Figure S10. ESI-MS spectrum of C_{Ag} .

Figure S11. Infrared spectrum of C_{Ag} .

Figure S12. 1D and 2D NMR spectra (600 MHz, 298K, CDCl₃) for dichloro[(*S*)-3-(2-(3,5-dimethyl-1*H*-pyrazol-1-yl)ethyl)-1-(1-phenylethyl)-1*H*-imidazol-2-ylidiene)- $\kappa^{1}N$]palladium(II), (C1): (a) ¹H-NMR, (b) ¹³C{¹H}-NMR, (c) COSY NMR, (d) ROESY NMR, (e) HSQC NMR, (f) HMBC NMR.

(c)

Figure S13. HR-ESI-MS spectrum of C1; (top) experimental, (bottom) simulated.

Figure S14. Infrared spectrum of C1.

Figure S15. 1D and 2D NMR spectra (360 MHz, 298K, dmso-d₆) for trichloro[(*S*)-3-(2-(3,5-dimethyl-1*H*-pyrazol-1-yl)ethyl)-1-(1-phenylethyl)-1*H*-imidazol-3-ium- $\kappa^{1}N$]palladium(II), (**C2**): (a) ¹H-NMR, (b) ¹³C{¹H}-NMR, (c) HSQC NMR, (d) COSY NMR.

Figure S16. ESI-MS spectrum of C2.

Figure S17. Infrared spectrum of C2.

Figure S18. HR-TEM micrographs of Pd nanoparticles (a) N1 and (b) N2 after catalytic experiments.

(a)

