Supporting Information

Polypyridyl-functionalizated alkynyl gold(I) metallaligands supported by tri- and tetradentate phosphanes

Montserrat Ferrer,^{a,*} Leticia Giménez,^a Albert Gutiérrez,^a Joao Carlos Lima,^b Laura

Rodríguez,^{a,c} Manuel Martínez,^a Avelino Martín,^d Rakesh Puttreddy ^e and Kari Rissanen^e

^a Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica. Universitat de Barcelona, c/ Martí i Franquès 1-11 08028 Barcelona, Spain.

^b LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, Monte de Caparica, Portugal.

^c Institut de Nanociència i Nanotecnologia (IN²UB). Universitat de Barcelona, 08028 Barcelona, Spain

^d Departamento de Química Inorgánica, Campus Universitario-Edificio de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Spain

^e Department of Chemistry, University of Jyväskylä, POB 35, 40014 Jyväskylä, Finland

Figure S1. ¹H NMR of $[Au_3(C \equiv CC_{10}H_7N_2)_3(\mu_3 \text{-triphos})]$ (4) in CDCl₃ at 298 K.

Figure S2. ³¹P{¹H} NMR of $[Au_3(C \equiv CC_{10}H_7N_2)_3(\mu_3 \text{-triphos})]$ (4) in CDCl₃ at 298 K.

Figure S3. ¹³C{¹H} NMR of $[Au_3(C \equiv CC_{10}H_7N_2)_3(\mu_3 \text{-triphos})]$ (4) in CDCl₃ at 298 K.

Figure S4. ¹H-¹H COSY NMR of $[Au_3(C \equiv CC_{10}H_7N_2)_3(\mu_3 \text{-triphos})]$ (4) in CDCl₃ at 298 K.

Figure S5. ¹H NMR of $[Au_3(C \equiv CC_{10}H_7N_2)_3(\mu_3 \text{-triphosph})]$ (5) in CDCl₃ at 298 K.

Figure S6. ³¹P{¹H} NMR of $[Au_3(C \equiv CC_{10}H_7N_2)_3(\mu_3 \text{-triphosph})]$ (5) in CDCl₃ at 298 K.

Figure S8. ${}^{1}H{}^{-1}H$ COSY NMR of $[Au_{3}(C \equiv CC_{10}H_{7}N_{2})_{3}(\mu_{3}\text{-triphosph})]$ (5) in CDCl₃ at 298 K.

Figure S9. ${}^{1}H{}^{-13}C$ gHSQC NMR of $[Au_{3}(C \equiv CC_{10}H_{7}N_{2})_{3}(\mu_{3}\text{-triphosph})]$ (5) in CDCl₃ at 298 K.

Figure S10. ¹H-¹³C HMBC NMR of $[Au_3(C \equiv CC_{10}H_7N_2)_3(\mu_3 \text{-triphosph})]$ (5) in CDCl₃ at 298 K.

Figure S11. ¹H NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-tetraphos})]$ (6) in CDCl₃ at 298 K.

Figure S12. ³¹P{¹H} NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-tetraphos})]$ (6) in CDCl₃ at 298 K.

Figure S13. ¹³C{¹H} NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-tetraphos})]$ (6) in CDCl₃ at 298 K.

Figure S14. ¹H-¹H COSY NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-tetraphos})]$ (6) in CDCl₃ at 298 K.

Figure S15. ¹H-¹³C HSQC NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-tetraphos})]$ (6) in CDCl₃ at 298 K.

Figure S16. ¹H-¹³C HMBC NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-tetraphos})]$ (6) in CDCl₃ at 298 K.

90 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.

Figure S17. ¹H NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-tpbz})]$ (7) in CDCl₃ at 298 K.

Figure S19. ¹³C{¹H} NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-tpbz})]$ (7) in CDCl₃ at 298 K.

Figure S20. ¹H-¹H COSY NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-tpbz})]$ (7) in CDCl₃ at 298 K.

Figure S21. ¹H-³¹C gHSQC NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-tpbz})]$ (7) in CDCl₃ at 298 K

Figure S22. ¹H NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-dppeda})]$ (8) in CDCl₃ at 298 K.

Figure S23. ³¹P{¹H} NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-dppeda})]$ (8) in CDCl₃ at 298 K.

5 ò

90 85 80

Figure S24. ¹³C{¹H} NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-dppeda})]$ (8) in CDCl₃ at 298 K.

Figure S25. ¹H-¹³C gHSQC NMR of $[Au_4(C \equiv CC_{10}H_7N_2)_4(\mu_4\text{-dppeda})]$ (8) in CDCl₃ at 298 K.

Figure S26. ¹H NMR of $[Au_3(C \equiv CC_{15}H_{10}N_3)_3(\mu_3 \text{-triphos})]$ (9) in CDCl₃ at 298 K.

-25.3

90 85 80 75 70 65 60 55 50 45

40 35 30

155 150 145 140 135 130 125 120 115 110 105 100 95

Figure S29. ¹H NMR of $[Au_3(C \equiv CC_{15}H_{10}N_3)_3(\mu_3 \text{-triphosph})]$ (10) in CDCl₃ at 298 K.

Figure S30. ³¹P{¹H} NMR of $[Au_3(C \equiv CC_{15}H_{10}N_3)_3(\mu_3 \text{-triphosph})]$ (10) in CDCl₃ at 298 K.

Figure S31. ${}^{13}C{}^{1}H$ NMR of $[Au_3(C \equiv CC_{15}H_{10}N_3)_3(\mu_3 \text{-triphosph})]$ (10) in CDCl₃ at 298 K.

Figure S32. ¹H NMR of $[Au_4(C \equiv CC_{15}H_{10}N_3)_4(\mu_4\text{-tetraphos})]$ (11) in CDCl₃ at 298 K.

Figure S33. ³¹P{¹H} NMR of $[Au_4(C \equiv CC_{15}H_{10}N_3)_4(\mu_4\text{-tetraphos})]$ (11) in CDCl₃ at 298 K.

Figure S34. ¹³C{¹H} NMR of $[Au_4(C \equiv CC_{15}H_{10}N_3)_4(\mu_4\text{-tetraphos})]$ (11) in CDCl₃ at 298 K.

Figure S35. ¹H-¹³C HSQC NMR of $[Au_4(C \equiv CC_{15}H_{10}N_3)_4(\mu_4\text{-tetraphos})]$ (11) in CDCl₃ at 298 K.

.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6

Figure S38. ¹³C{¹H} NMR of $[Au_4(C \equiv CC_{15}H_{10}N_3)_4(\mu_4\text{-tpbz})]$ (12) in CDCl₃ at 298 K.

Figure S39. ¹H-¹³C gHSQC NMR of $[Au_4(C \equiv CC_{15}H_{10}N_3)_4(\mu_4\text{-tpbz})]$ (12) in CDCl₃ at 298 K.

Figure S40. ¹H NMR of $[Au_4(C \equiv CC_{15}H_{10}N_3)_4(\mu_4\text{-dppeda})]$ (13) in CDCl₃ at 298 K.

Figure S42. ¹³C NMR of $[Au_4(C \equiv CC_{15}H_{10}N_3)_4(\mu_4\text{-dppeda})]$ (13) in CDCl₃ at 298 K.

Figure S43. View of the molecular packing of compound 6. π - π interactions between bipyridine rings of different molecules are highlighted in red.

Figure S44. View of the molecular packing of compound **6** following the crystallographic a* axis. π - π interactions between bipyridine rings of different molecules are highlighted in red.

Figure S45. Absorption spectra of dichloromethane solutions of compounds 4-8.

Figure S46. Absorption spectra of dichloromethane solutions of compounds 9 -13.

Figure S47. Absorption (left) and emission (right) spectra of a 10^{-6} M dichloromethane solution of 4 upon addition of different amounts of $[Cu(CH_3CN)_4]BF_4$.

Figure S48. Absorption (left) and emission (right) spectra of a 10^{-6} M dichloromethane solution of **6** upon addition of different amounts of $[Cu(CH_3CN)_4]BF_4$.

Figure S49. Absorption (left) and emission (right) spectra of a 10⁻⁶M dichloromethane solution of **7** upon addition of different amounts of [Cu(CH₃CN)₄]BF₄.

Figure S50. Emission spectra of $1 \cdot 10^{-6}$ M dichloromethane solution of 5 in the presence of one equivalent of $[Cu(CH_3CN)_4]BF_4$ with and without oxygen.

Figure S51. Absorption (left) and emission (right) spectra of a 10^{-6} M dichloromethane solution of 4 upon addition of different amounts of Zn^{2+} .

	6 ·1.75CH ₂ Cl ₂	7
Formula	$C_{411}H_{318}Au_{16}Cl_{14}N_{32}$	$C_{102}H_{70}Au_4N_8P_4$
Fw	9848.24	2319.4
T (K)	120	200(2)
λ (Å)	1.54184	0.71073
Crystal system	monoclinic	orthorhombic
Space group	$P2_{l}/c$	Pbcn
a (Å)	33.1673(9)	18.968(6)
b (Å)	17.3472(5)	26.452(8)
c (Å)	34.8570(14)	20.575(1)
α (°)	90	90
β (°)	105.877(3)	90
γ (°)	90	90
V (Å ³)	19290.2(12)	10323(5)
Ζ	2	4
D_{calc} (Mg m ⁻³)	1.696	1.492
μ (mm ⁻¹)	13.090	5.774
F(000)	9500	4456
Crystal size (mm ³)	0.23 x 0.17 x 0.13	0.3 x 0.17 x 0.13
θ (°)	3.26-66.75	3.02 -23.01
Index ranges	$-39 \le h \le 28$	$-20 \le h \le 20$
	$-20 \le k \le 13$	$-28 \le k \le 29$
	$-41 \le l \le 40$	$-22 \le l \le 22$
Reflections collected	59429	89602
Independent reflections [R(int)]	27931 ($R_{int} = 0.0379$)	7185 ($R_{int} = 0.184$)
$GOF(F^2)$	1.087	1.13
Data/restrains/parameters	33966/183/1777	7185/0/196
$R1, wR2 (I>2\sigma(I))$	0.1094, 0.2547	0.092, 0.222
R1, w $R2$ (all data)	0.1250, 0.2650	0.126, 0.248

Table S1. Crystal Data and Structure Refinement for $[Au_4(C=CC_{10}H_7N_2)_4(\mu_4\text{-tetraphos})]$ (6) and $[Au_4(C=CC_{10}H_7N_2)_4(\mu_4\text{-tpbz})]$ (7).