Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Unprecedented Family of Heterometallic Ln^{III}[18-Metallacrown-6]

Complexes: Syntheses, Structures and Magnetic Properties

Wei Yang,^a Hua Yang,^a Su-Yuan Zeng,^a Da-Cheng Li^{a, b} and Jian-Min Dou^{*a} ^a Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemical and Chemical Engineering, Liaocheng University, 252059 Liaocheng, P.R.

China

^{b.}Institute of BioPharmaccutical Research, Liaocheng University, P.R. China

Contents:

Fig. S1 Distorted trigonal-bipyramid geometry ground Fe1 (a), Fe2 (b), Fe4 (d), Fe5

(e) and distorted octahedral geometry around Fe3 (c), Fe6 (f) for complex 1.

Fig. S2 Distorted square-antiprismatic geometries around Dy1 (a), Tb1 (b), Gd1 (c),

Y1 (d)

Fig. S3 The pairwise exchanging interaction in complex 4

Fig. S4 $\chi_{M}T$ *vs T* plots for **4** at 1000 Oe. The solid line is the best fit according to the Hamiltonian given in eq 1.

Fig. S5 Temperature dependence of the $\chi_M T$ product at 1000 Oe for complexes Fe₆Dy (1), Fe₆Y (4), and $\chi_M T$ (Fe₆Dy)– $\chi_M T$ (Fe₆Y) (left). The $\chi_M T$ plot of Fe₆Dy (1) and the substituted $\chi_M T$ plot (Fe₆Dy)– $\chi_M T$ (Fe₆Y) on logarithmic temperature scale (right).

Fig. S6 Plots of isothermal magnetization M versus field H for 1–3 at 2 K (a). Field dependence of magnetizations of 1(b), 2 (c), 3 (d)

Fig. S7 Temperature dependence of the in-phase (χ'_M) and out-of phase (χ''_M) ac susceptibility signals of **1** measured under 2.0 Oe field with a zero dc field. The solid lines are guides for the eyes.

Fig. S8 Temperature dependence of the in-phase (χ'_M) and out-of phase (χ''_M) ac susceptibility signals of **2** measured under 2.0 Oe field with a zero dc field. The solid

lines are guides for the eyes.

Fig. S9 Temperature dependence of the in-phase (χ'_{M}) and out-of phase (χ''_{M}) ac susceptibility signals of **2** measured under 2.0 Oe field with a 1500 Oe dc field. The solid lines are guides for the eyes.

Fig. S10 Magnetization relaxation time $\ln(\chi''\chi')$ vs T^{-1} plots for **2**. The solid line is fitted with the Debye model.

Fig. S11 Temperature dependence of the in-phase (χ'_{M}) and out-of phase (χ''_{M}) ac susceptibility signals of **3** measured under 2.0 Oe field with a zero dc field. The solid lines are guides for the eyes.

Fig. S12 Temperature dependence of the in-phase (χ'_{M}) and out-of phase (χ''_{M}) ac susceptibility signals of **3** measured under 2.0 Oe field with a 3000 Oe dc field. The solid lines are guides for the eyes.

Fig. S13 Magnetization relaxation time $\ln(\chi''\chi')$ vs T^{-1} plots for **3**. The solid line is fitted with the Debye model.

Fig. S14 Temperature dependence of the in-phase (χ'_{M}) and out-of phase (χ''_{M}) ac susceptibility signals of **4** measured under 2.0 Oe field with a zero dc field. The solid lines are guides for the eyes

Table S1. Bond Valence Calculations (BVS) for complexes 1-4

 Table S2. Selected bond angles for 1–4

Table S3. Measured $\Delta E_{\rm eff} / k_{\rm B}$ and τ_0 values for 2 and 3.

Fig. S1 Distorted trigonal-bipyramid geometry ground Fe1 (a), Fe2 (b), Fe4 (d), Fe5 (e) and distorted octahedral geometry around Fe3 (c), Fe6 (f) for complex **1**.

Fig. S2 Distorted square-antiprismatic geometries around Dy1 (a), Tb1 (b), Gd1 (c), Y1 (d)

Fig. S3 The pairwise exchanging interaction in complex 4

Fig. S4 $\chi_M T$ *vs T* plots for 4 at 1000 Oe. The solid line is the best fit according to the Hamiltonian given in eq 1.

Fig. S5 Temperature dependence of the $\chi_M T$ product at 1000 Oe for complexes Fe₆Dy (1), Fe₆Y (4), and $\chi_M T$ (Fe₆Dy)– $\chi_M T$ (Fe₆Y) (left). The $\chi_M T$ plot of Fe₆Dy (1) and the substituted $\chi_M T$ plot (Fe₆Dy)– $\chi_M T$ (Fe₆Y) on logarithmic temperature scale (right).

Fig. S6 Plots of isothermal magnetization *M* versus field *H* for **1–3** at 2 K (a). Field dependence of magnetizations of **1**(b), **2** (c), **3** (d)

Fig. S7 Temperature dependence of the in-phase (χ'_M) and out-of phase (χ''_M) ac susceptibility signals of **1** measured under 2.0 Oe field with a zero dc field. The solid lines are guides for the

Fig. S8 Temperature dependence of the in-phase (χ'_M) and out-of phase (χ''_M) ac susceptibility signals of **2** measured under 2.0 Oe field with a zero dc field. The solid lines are guides for the

Fig. S9 Temperature dependence of the in-phase (χ'_{M}) and out-of phase (χ''_{M}) ac susceptibility signals of 2 measured under 2.0 Oe field with a 1500 Oe dc field. The solid lines are guides for the eyes.

Fig. S10 Magnetization relaxation time $\ln(\chi''\chi')$ vs T^{-1} plots for **2**. The solid line is fitted with the Debye model.

Fig. S11 Temperature dependence of the in-phase (χ'_{M}) and out-of phase (χ''_{M}) ac susceptibility signals of **3** measured under 2.0 Oe field with a zero dc field. The solid lines are guides for the eyes.

Fig. S12 Temperature dependence of the in-phase (χ'_{M}) and out-of phase (χ''_{M}) ac susceptibility signals of **3** measured under 2.0 Oe field with a 3000 Oe dc field. The solid lines are guides for the eyes.

Fig. S13 Magnetization relaxation time $\ln(\chi''\chi')$ vs T^{-1} plots for **3**. The solid line is fitted with the Debye model.

Fig. S14 Temperature dependence of the in-phase (χ'_{M}) and out-of phase (χ''_{M}) ac susceptibility signals of 4 measured under 2.0 Oe field with a zero dc field. The solid lines are guides for the eyes.

							F	
atom	Comp	lex1	Com	plex 2	Comple	ex 3	Cor	nplex 4
	+2	+3	+2	+3	+2	+3	+2	+3
Fe1	2.53	2.99	2.57	3.04	2.52	2.99	2.53	2.99
Fe2	2.60	3.07	2.60	3.07	2.60	3.07	2.60	3.07
Fe3	2.55	3.01	2.60	3.07	2.55	3.02	2.62	3.10
Fe4	2.56	3.02	2.61	3.09	2.56	3.02	2.60	3.07
Fe5	2.56	3.03	2.61	3.09	2.56	3.03	2.58	3.05
Fe6	2.54	3.00	2.57	3.03	2.54	3.00	2.54	3.00

Table S1. Bond Valence Calculations (BVS) for complexes 1-4

	Table S2. Selected	bond angles for 1–4	
		1	
O(14)-Dy(1)-O(13)	117.87(13)	O(19)-Dy(1)-O(18)	114.65(16)
$(\gamma \text{ angle})$		(y angle)	
α angle (O14, O13)	59.93(13)	α angle (O19, O18)	57.32(16)
O(12)-Dy(1)-O(4)	101.17(14)	O(21)-Dy(1)-O(20)	127.48(16)
(y angle)		(y angle)	
α angle (O12, O4)	50.58(14)	α angle (O21, O20)	63.73(16)
		2	
O(14)-Tb(1)-O(13)	117.96(12)	O(19)- Tb(1)-O(18)	115.88(14)
$(\gamma \text{ angle})$		(y angle)	
α angle (O14, O13)	58.98	α angle (O19, O18)	57.94
O(12)- Tb(1)-O(4)	101.28(12)	O(21)- Tb(1)-O(20)	127.82(16)
$(\gamma \text{ angle})$		(y angle)	
α angle (O12, O4)	50.64	α angle (O21, O20)	63.91
		3	
O(14)-Gd(1)-O(13)	117.8(2)	O(19)- Gd(1)-O(18)	116.2(3)
$(\gamma \text{ angle})$		(y angle)	
α angle (O14, O13)	58.90	α angle (O19, O18)	58.10
O(12)- Gd(1)-O(4)	100.1(3)	O(21)- Gd(1)-O(20)	128.2(3)
$(\gamma \text{ angle})$		(y angle)	
α angle (O12, O4)	50.05	α angle (O21, O20)	64.10
		4	
O(17)-Y(1)-O(16)	114.72(14)	O(15)- Y(1)-O(14)	118.07(12)
$(\gamma \text{ angle})$		(y angle)	
α angle (O17, O16)	57.36	α angle (O15, O14)	59.04
O(4)-Y(1)-O(12)	101.24(13)	O(18)- Y(1)-O(19)	126.75(14)
$(\gamma \text{ angle})$		(y angle)	
α angle (O4,O12)	50.62	α angle (O18, O19)	63.38

 Table S2. Selected bond angles for 1–4

Tab	le S3.	Measured	$\Delta E_{\rm eff}/$	$k_{\rm B}$ and	$1 \tau_0$ val	lues fo	or 2	and a	3.
					()				

	Complex 2		Complex 3		
Frequency (Hz)	$\Delta E_{\rm eff} / k_{\rm B}$ (k)	$ au_0$ (s)	$\frac{\Delta E_{\rm eff} / k_{\rm B}}{\rm (k)}$	$ au_0$ (s)	
320	7.46	1.33×10 ⁻⁵	11.96	8.56×10 ⁻⁷	
445	7.10	1.37×10 ⁻⁵	12.31	6.78×10 ⁻⁷	
576	6.75	1.43×10 ⁻⁵	12.47	5.98×10-7	
666	6.54	1.47×10 ⁻⁵	12.18	6.37×10 ⁻⁷	
779	6.13	1.62×10 ⁻⁵	12.19	6.22×10 ⁻⁷	
999	5.71	1.75×10-5	11.44	8.06×10-7	