Highly active group 11 metal complexes with α-hydrazidophosphonate ligands

Daniel Salvador-Gil,^a Lourdes Ortego,^a Raquel P. Herrera,^b Isabel

Marzo^c and M. Concepción Gimeno*,^a

^a Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain. E-mail: <u>gimeno@unizar.es</u>, Telf: -34 976762291

^b Laboratorio de Organocatálisis Asimétrica. Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza.

^c Departamento de Bioquímica y Biología Molecular, Universidad de Zaragoza, 50009 Zaragoza, Spain.

Table of contents

1. Characterization of complexes 1-14	S3
1.1. Spectra of complex [Ag(L1) ₂]OTf (1)	
S3	
1.2. Spectra of complex [Ag(L2) ₂]OTf (2)	S5
1.3. Spectra of complex [Ag(L3) ₂]OTf (3)	S7
1.4. Spectra of complex [Ag(L4) ₂]OTf (4)	S9
1.5. Spectra of complex [Ag(L1)(PPh ₃)]OTf (5)	S11
1.6. Spectra of complex [Ag(L2)(PPh ₃)]OTf (6)	S13
1.7. Spectra of complex [Ag(L3)(PPh ₃)]OTf (7)	S15
1.8. Spectra of complex [Ag(L4)(PPh ₃)]OTf (8)	S17
1.9. Spectra of complex [Au(L1)(PPh ₃)]OTf (9)	S19
1.10. Spectra of complex [Au(L2)(PPh ₃)]OTf (10)	S21
1.11. Spectra of complex [Au(L4)(PPh ₃)]OTf (11)	S23
1.12. Spectra of complex [Au(L2) ₂]OTf (12)	S25
1.13. Spectra of complex [Cu(L1)(PPh ₃)]NO ₃ (13)	S27
1.14. Spectra of complex [Cu(L2)(PPh ₃)]NO ₃ (14)	S29

1.15. Spectra of complex [Cu(L3)(PPh ₃)]NO ₃ (15)	S31
1.16. Spectra of complex [Cu(L4)(PPh ₃)]NO ₃ (16)	S33
2. X-ray data for complexes 5 and 8	S38
2.1. Table S1. Crystal data and structure refinement for complex 5.	S38
2.2. Table S2. Selected bond lengths [Å] and angles [deg] for complex 5.	S39
2.3. Table S3. Crystal data and structure refinement for complex 8.	S40
2.4. Table S4. Selected bond lengths [Å] and angles [deg] for complex 8.	S41

<u>1. Characterization of complexes 1-14</u>

1.11. Spectra of complex [Ag(L1)₂]OTf (1)

Figure S1. ¹H NMR spectrum of compound [Ag(L1)₂]OTf (1)

Figure S2. ³¹P NMR spectrum of compound [Ag(L1)₂]OTf (1)

Figure S3. ¹³C-APT NMR spectrum of compound [Ag(L1)₂]OTf (1)

1.2. Spectra of complex [Ag(L2)₂]OTf (2)

Figure S4. ¹H NMR spectrum of compound [Ag(L2)₂]OTf (2)

Figure S6. ¹³C-APT spectrum of compound [Ag(L2)₂]OTf (2)

1.3. Spectra of complex [Ag(L3)₂]OTf (3)

Figure S7. ¹H NMR spectrum of compound [Ag(L3)₂]OTf (3)

Figure S8. ³¹P NMR spectrum of compound [Ag(L3)₂]OTf (3)

Figure S9. ¹³C-APT spectrum of compound [Ag(L3)₂]OTf (3)

1.4. Spectra of complex [Ag(L4)₂]OTf (4)

Figure S10. ¹H NMR spectrum of compound [Ag(L4)₂]OTf (4)

Figure S11. ³¹P NMR spectrum of compound [Ag(L4)₂]OTf (4)

Figure S12. ¹³C-APT spectrum of compound [Ag(L4)₂]OTf (4)

1.5. Spectra of complex [Ag(L1)(PPh₃)]OTf (5)

Figure S13. ¹H NMR spectrum of compound [Ag(L1)(PPh₃)]OTf (5)

Figure S14. ³¹P NMR spectrum of compound [Ag(L1)(PPh₃)]OTf (5)

Figure S15. ¹³C-APT spectrum of compound [Ag(L1)(PPh₃)]OTf (5)

1.6. Spectra of complex [Ag(L2)(PPh₃)]OTf (6)

Figure S16. ¹H NMR spectrum of compound [Ag(L2)(PPh₃)]OTf (6)

Figure S17. ³¹P NMR spectrum of compound [Ag(L2)(PPh₃)]OTf (6)

Figure S18. ¹³C-APT spectrum of compound [Ag(L2)(PPh₃)]OTf (6)

1.7. Spectra of complex [Ag(L3)(PPh₃)]OTf (7)

Figure S19. ¹H NMR spectrum of compound [Ag(L3)(PPh₃)]OTf (7)

Figure S20. ³¹P NMR spectrum of compound [Ag(L3)(PPh₃)]OTf (7)

Figure S21. ¹³C-APT spectrum of compound [Ag(L3)(PPh₃)]OTf (7)

1.8. Spectra of complex [Ag(L4)(PPh₃)]OTf (8)

Figure S22. ¹H NMR spectrum of compound [Ag(L4)(PPh₃)]OTf (8)

Figure S23. ³¹P NMR spectrum of compound [Ag(L4)(PPh₃)]OTf (8)

Figure S24. ¹³C-APT spectrum of compound [Ag(L4)(PPh₃)]OTf (8)

1.9. Spectra of complex [Au(L1)(PPh₃)]OTf (9)

Figure S25. ¹H NMR spectrum of compound [Au(L1)(PPh₃)]OTf (9)

Figure S26. ³¹P NMR spectrum of compound [Au(L1)(PPh₃)]OTf (9)

1.10. Spectra of complex [Au(L2)(PPh₃)]OTf (10)

Figure S28. ¹H NMR spectrum of compound [Au(L2)(PPh₃)]OTf (10)

Figure S29. ³¹P NMR spectrum of compound [Au(L2)(PPh₃)]OTf (10)

Figure S30. ¹³C-APT spectrum of compound [Au(L2)(PPh₃)]OTf (10)

1.11. Spectra of complex [Au(L4)(PPh₃)]OTf (11)

Figure S31. ¹H NMR spectrum of compound [Au(L4)(PPh₃)]OTf (11)

Figure S32. ³¹P NMR spectrum of compound [Au(L4)(PPh₃)]OTf (11)

Figure S33. ¹³C-APT spectrum of compound [Au(L4)(PPh₃)]OTf (11)

1.12. Spectra of complex [Au(L2)₂]OTf (12)

Figure S34. ¹H NMR spectrum of compound [Au(L2)₂]OTf (12)

Figure S35. ³¹P NMR spectrum of compound [Au(L2)₂]OTf (12)

Figure S36. ¹³C-APT spectrum of compound [Au(L2)₂]OTf (12)

1.13. Spectra of complex [Cu(L1)(PPh₃)]NO₃ (13)

Figure S37. ¹H NMR spectrum of compound [Cu(L1)(PPh₃)]NO₃ (13)

Figure S38. ³¹P NMR spectrum of compound [Cu(L1)(PPh₃)]NO₃ (13)

Figure S39. ¹³C-APT spectrum of compound [Cu(L1)(PPh₃)]NO₃ (13)

Figure S40. ¹HSQC spectrum of compound [Cu(L1)(PPh₃)]NO₃ (13)

Figure S41. ¹HMBC spectrum of compound [Cu(L1)(PPh₃)]NO₃ (13)

1.14. Spectra of complex [Cu(L2)(PPh₃)]NO₃ (14)

Figure S42. ¹H NMR spectrum of compound [Cu(L2)(PPh₃)]NO₃ (14)

Figure S43. ³¹P NMR spectrum of compound [Cu(L2)(PPh₃)]NO₃ (14)

Figure S44. ¹³C-APT spectrum of compound [Cu(L2)(PPh₃)]NO₃ (14)

Figure S45. ¹HSQC spectrum of compound [Cu(L2)(PPh₃)]NO₃ (14)

Figure S46. ¹HMBC spectrum of compound [Cu(L2)(PPh₃)]NO₃ (14)

1.15. Spectra of complex [Cu(L3)(PPh₃)]NO₃ (15)

Figure S47. ¹H NMR spectrum of compound [Cu(L3)(PPh₃)]NO₃ (15)

Figure S48 ³¹P NMR spectrum of compound [Cu(L3)(PPh₃)]NO₃ (15)

Figure S49. ¹³C-APT spectrum of compound [Cu(L3)(PPh₃)]NO₃ (15)

Figure S50. ¹HSQC spectrum of compound [Cu(L3)(PPh₃)]NO₃ (15)

Figure S51. ¹HMBC spectrum of compound [Cu(L3)(PPh₃)]NO₃ (15)

1.16. Spectra of complex [Cu(L4)(PPh₃)]NO₃ (16)

Figure S52. ¹H NMR spectrum of compound [Cu(L4)(PPh₃)]NO₃ (16)

Figure S53. ³¹P NMR spectrum of compound [Cu(L4)(PPh₃)]NO₃ (16)

2. X-ray data for complexes 5 and 8

2.1. Table S1. Crystal data and structure refinement for complex 5.

Identification code	c387	
Empirical formula	$C_{43}H_{40}AgCl_{3}F_{3}N_{3}O_{9}P_{2}S$	
Formula weight	1108.00	
Temperature	173(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Triclinic, P-1	
Unit cell dimensions	a = 12.471(3) A alpha = 95.73(3) deg.	
	b = 14.158(3) A beta = 90.95(3) deg.	
	c = 14.410(3) A gamma = 105.66(3) deg.	
Volume	2435.1(9) A ³	
Z, Calculated density	2, 1.511 Mg/m ³	
Absorption coefficient	0.753 mm ⁻¹	
F(000)	1124	
Crystal size	0.18 x 0.14 x 0.14 mm	
Theta range for data collection	4.19 to 25.50 deg.	
Limiting indices	-15<=h<=15, -17<=k<=17, -17<=l<=17	
Reflections collected / unique	47209 / 9030 [R(int) = 0.0566]	
Completeness to theta = 25.50	99.5 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9019 and 0.8763	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9030 / 0 / 596	
Goodness-of-fit on F^2	1.068	
Final R indices [I>2sigma(I)]	R1 = 0.0487, $wR2 = 0.1165$	
R indices (all data)	R1 = 0.0562, wR2 = 0.1211	
Largest diff. peak and hole	1.053 and -0.869 e.A ⁻³	

2.2. Table S2. Selected bond lengths [Å] and angles [deg] for complex 5.

2.326(2)	O(2)-C(41)	1.408(4)
2.3533(10)	C(50)-N(1)	1.490(4)
2.445(2)	N(1)-N(2)	1.411(4)
2.490(3)	N(1)-H(0)	0.86(4)
1.820(4)	N(2)-C(54)	1.336(4)
1.821(4)	N(2)-H(1)	0.80(4)
1.821(3)	C(54)-O(4)	1.237(4)
1.469(2)	C(64)-N(3)	1.469(5)
1.573(2)	N(3)-O(5)	1.216(4)
1.580(3)	N(3)-O(6)	1.218(4)
1.819(3)		
1.420(4)		
137.79(7)	O(1)-P(2)-C(50)	100.10(14)
84.10(9)	O(2)-P(2)-C(50)	108.90(15)
126.92(6)	C(31)-O(1)-P(2)	122.6(2)
69.11(8)	C(41)-O(2)-P(2)	124.5(2)
139.69(7)	P(2)-O(3)-Ag(1)	116.27(12)
74.57(9)	N(1)-C(50)-C(51)	111.9(3)
106.03(17)	N(1)-C(50)-P(2)	106.8(2)
105.17(16)	N(2)-N(1)-C(50)	111.5(2)
103.88(15)	N(2)-N(1)-Ag(1)	107.37(18)
111.27(12)	C(50)-N(1)-Ag(1)	114.73(19)
112.89(12)	N(2)-N(1)-H(0)	104(2)
116.70(11)	O(5)-N(3)-O(6)	123.4(3)
116.52(14)	O(5)-N(3)-C(64)	118.2(3)
114.13(14)	O(6)-N(3)-C(64)	118.4(3)
101.19(13)		
114.38(14)		
	$\begin{array}{c} 2.326(2)\\ 2.3533(10)\\ 2.445(2)\\ 2.490(3)\\ 1.820(4)\\ 1.821(4)\\ 1.821(3)\\ 1.469(2)\\ 1.573(2)\\ 1.580(3)\\ 1.819(3)\\ 1.420(4)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

2.3. Table S3. Crystal data and structure refinement for complex 8.

Identification code	c404
Empirical formula	$C_{42}H_{39}AgF_{3}N_{3}O_{9}P_{2}S$
Formula weight	988.63
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 13.114(3) A alpha = 89.03(3) deg.
	b = 15.701(3) A beta = 88.03(3) deg.
	c = 21.412(4) A gamma = 78.01(3) deg.
Volume	4309.8(15) A ³
Z, Calculated density	4, 1.524 Mg/m^3
Absorption coefficient	0.661 mm ⁻¹
F(000)	2016
Crystal size	0.40 x 0.08 x 0.06 mm
Theta range for data collection	4.17 to 25.50 deg.
Limiting indices	-15<=h<=15, -19<=k<=19, -25<=l<=25
Reflections collected / unique	63598 / 15933 [R(int) = 0.0871]
Completeness to theta $= 25.50$	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9614 and 0.7778
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	15933 / 6 / 1110
Goodness-of-fit on F^2	1.051
Final R indices [I>2sigma(I)]	R1 = 0.0890, wR2 = 0.1971
R indices (all data)	R1 = 0.1322, wR2 = 0.2193
Largest diff. peak and hole	3.957 and -1.320 e.A ⁻³

2.4. Table S4. Selected bond lengths [Å] and angles [deg] for complex 8.

Ag(1)-O(4)	2.348(5)	Ag(2)-O(10)	2.321(5)
Ag(1)-P(1)	2.352(2)	Ag(2)-P(3)	2.345(2)
Ag(1)-N(1)	2.447(5)	Ag(2)-N(4)	2.404(6)
Ag(1)-O(3)	2.471(5)	P(3)-C(71)	1.788(8)
P(1)-C(11)	1.812(8)	P(3)-C(81)	1.833(8)
P(1)-C(1)	1 812(8)	P(3)-C(61)	1 836(8)
P(1)-C(21)	1 826(8)	P(4)-O(9)	1 468(5)
P(2)-O(3)	1 467(5)	P(4)-O(7)	1 575(5)
P(2)-O(1)	1.580(5)	P(4)-O(8)	1.585(5)
P(2) - O(2)	1.588(5)	P(4)-C(87)	1.807(7)
P(2)-C(37)	1.800(0) 1.812(7)	N(4) - N(5)	1 426(8)
N(1)-N(2)	1 430(8)	N(4)-C(87)	1 482(9)
N(1)-C(37)	1.481(8)	N(5)-C(107)	1 335(9)
N(2)-C(47)	1.340(9)	N(6) - O(11)	1 229(8)
N(2) = O(1)	1.310(9) 1 222(8)	N(6) - O(12)	1.229(8) 1.237(8)
N(3) - O(6)	1 239(8)	N(6) - C(114)	1.257(0) 1 463(9)
N(3) - C(54)	1.239(0) 1 474(9)	O(7)-C(91)	1.103(9) 1.401(9)
$\Omega(1)$ -C(31)	1.474(9) 1 401(9)	O(8)-C(101)	1.401(9) 1 404(8)
O(2)-C(41)	1.401(9) 1 410(8)	O(10)-C(107)	1.404(0) 1.226(8)
O(2)-C(41) O(4)-C(47)	1 235(8)	0(10)-0(107)	1.220(0)
0(4)-0(47)	1.235(0)		
O(4)-Ag(1)-P(1)	137.97(13)	P(2)-O(3)-Ag(1)	113.6(3)
O(4)-Ag(1)-N(1)	69.68(17)	C(47)-O(4)-Ag(1)	115.9(4)
P(1)-Ag(1)-N(1)	144.18(15)	O(10)-Ag(2)-P(3)	136.57(13)
O(4)-Ag(1)-O(3)	86.12(17)	O(10)-Ag(2)-N(4)	71.65(18)
P(1)-Ag(1)-O(3)	119.64(12)	P(3)-Ag(2)-N(4)	150.40(15)
N(1)-Ag(1)-O(3)	76.08(17)	C(71)-P(3)-C(81)	104.4(4)
C(11)-P(1)-C(1)	102.6(4)	C(71)-P(3)-C(61)	105.0(4)
C(11)-P(1)-C(21)	107.1(3)	C(81)-P(3)-C(61)	106.0(3)
C(1)-P(1)-C(21)	107.8(4)	C(71)-P(3)-Ag(2)	117.2(3)
C(11)-P(1)-Ag(1)	114.8(3)	C(81)-P(3)-Ag(2)	110.3(2)
C(1)-P(1)-Ag(1)	113.7(3)	C(61)-P(3)-Ag(2)	113.0(3)
C(21)-P(1)-Ag(1)	110.2(3)	O(9)-P(4)-O(7)	116.9(3)
O(3)-P(2)-O(1)	115.5(3)	O(9)-P(4)-O(8)	115.1(3)
O(3)-P(2)-O(2)	114.5(3)	O(7)-P(4)-O(8)	101.4(3)
O(1)-P(2)-O(2)	102.0(3)	O(9)-P(4)-C(87)	115.0(3)
O(3)-P(2)-C(37)	114.8(3)	O(7)-P(4)-C(87)	100.6(3)
O(1)-P(2)-C(37)	101.8(3)	O(8)-P(4)-C(87)	105.9(3)
O(2)-P(2)-C(37)	106.7(3)	N(5)-N(4)-C(87)	111.1(6)
N(2)-N(1)-C(37)	112.1(5)	N(5)-N(4)-Ag(2)	107.1(4)
N(2)-N(1)-Ag(1)	107.7(3)	C(87)-N(4)-Ag(2)	116.2(4)
C(37)-N(1)-Ag(1)	114.5(4)	C(107)-N(5)-N(4)	121.0(6)
C(47)-N(2)-N(1)	120.4(5)	O(11)-N(6)-O(12)	123.0(6)
O(5)-N(3)-O(6)	123.7(6)	O(11)-N(6)-C(114)	118.3(6)
O(5)-N(3)-C(54)	117.2(6)	O(12)-N(6)-C(114)	118.7(6)
O(6)-N(3)-C(54)	119.1(6)	C(91)-O(7)-P(4)	122.6(4)
C(31)-O(1)-P(2)	121.2(4)	C(101)-O(8)-P(4)	125.0(4)
C(41)-O(2)-P(2)	124.3(4)	C(107)-O(10)-Ag(2)	114.8(4)