Supporting Information

Asymmetrically substituted triazenes as poor electron donor ligands in the precursor chemistry of iron(II) for iron-based metallic and intermetallic

nanocrystals

Khaled Soussi,^a Shashank Mishra,^{*a} Erwann Jeanneau,^b Jean-Marc Millet,^a Stéphane Daniele^{*a}

^aUniversité Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, 2 avenue Albert Einstein, F-69626 Villeurbanne, France.

^bUniversité Lyon 1, Centre de Diffractométrie Henri Longchambon, 5 rue de La Doua, 69100

Villeurbanne, France.

Fax: 33-472445399; Tel: 33 472445322 <u>shashank.mishra@ircelyon.univ-lyon1.fr</u> (SM) <u>stephane.daniele@ircelyon.univ-lyon1.fr</u> (SD)

Figure S1: FT-IR spectra of the new ligands HL^1 - HL^4 .

Figure S3: ¹H NMR spectrum of the ligand **HL**².

Figure S5: ¹H NMR spectrum of the ligand HL⁴.

Figure S9: Mass Spectrum of HL⁴.

Figure S10: FT-IR spectra of the new Fe(II) complexes 1-4.

Figure S11. Voltammogram of the new Fe(II) complexes (1)-(3).

Figure S12. EDX analysis on iron nanoparticles prepared from solution reduction in toluene. The presence of N and S are due to the use of the ionic liquid as medium while Cu and C impurities come from the grid.

Table S1: % atomic concentration of species present on the least oxidized part A and in the most oxidized one B in the sample of Al₁₃Fe₄ nanoparticles.

% atomic concentra-	Fe	Al	0	Si	Cl
tion					
А	11.3	54.16	32.06	1.4	1.08
В	8.16	3.25	80.25	-	-