# Bistriazole-*p*-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Hana Bunzen\*, Anton Lamp, Maciej Grzywa, Christa Barkschat, Dirk Volkmer

Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany

#### Content:

| 1) Thermoរ្                                                           | gravimetric analysis of H <sub>2</sub> -btbq·2H <sub>2</sub> O                                                                       | S2         |  |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| 2) <sup>13</sup> C NMR                                                | spectrum of H <sub>2</sub> -btbq·2H <sub>2</sub> O                                                                                   | S2         |  |  |
| 3) IR spectr                                                          | ra of $H_2$ -btbq·2 $H_2$ O and its alkali salts                                                                                     | <b>S</b> 3 |  |  |
| 4) Solubility of $H_2$ -btbq·2 $H_2O$ in alkaline aqueous solutions   |                                                                                                                                      |            |  |  |
| 5) VT-XRPD                                                            | ) measurements of $Li_2$ -btbq·2H <sub>2</sub> O, Na <sub>2</sub> -btbq·4H <sub>2</sub> O and K <sub>2</sub> -btbq·2H <sub>2</sub> O | S5         |  |  |
| 6) CV measurements of $H_2$ -btbq·2 $H_2O$ in basic aqueous solutions |                                                                                                                                      |            |  |  |
| 7) X-ray sin                                                          | gle crystal analysis                                                                                                                 | S9         |  |  |
|                                                                       | Optical microscopy images of $H_2$ -btbq·2 $H_2O$ and its alkali salts                                                               | S9         |  |  |
|                                                                       | Measured and simulated XRPD patterns of Li_2-btbq·2H_2O, Na_2-btbq·4H_2O and K_2-btbq·2H_2O                                          | <b>S</b> 9 |  |  |
|                                                                       | X-ray single crystal analysis of Li <sub>2</sub> -btbq·2H <sub>2</sub> O                                                             | S10        |  |  |
|                                                                       | X-ray single crystal analysis of Na <sub>2</sub> -btbq·4H <sub>2</sub> O                                                             | S13        |  |  |
|                                                                       | X-ray single crystal analysis of K <sub>2</sub> -btbq·2H <sub>2</sub> O                                                              | S19        |  |  |

## 1) Thermogravimetric analysis of H<sub>2</sub>-btbq·2H<sub>2</sub>O

The TG analysis of  $H_2$ -btbq·2 $H_2$ O revealed two steps (Fig. S1). The first step corresponds to the removal of two water molecules (measured: 16.21 %; calculated: 15.92 %). At the second step around 300 °C, the material decomposes (with explosive violence).



Fig. S1 Thermal stability of H<sub>2</sub>-btbq·2H<sub>2</sub>O studied by TG analysis under a nitrogen atmosphere.





Fig. S2 <sup>13</sup>C NMR spectrum of H<sub>2</sub>-btbq·2H<sub>2</sub>O in  $d_{6}$ -DMSO.

### 3) IR spectra of H<sub>2</sub>-btbq·2H<sub>2</sub>O and its alkali salts



Fig. S3 IR spectra of (a) H<sub>2</sub>-btbq·2H<sub>2</sub>O, (b) Li<sub>2</sub>-btbq·2H<sub>2</sub>O, (c) Na<sub>2</sub>-btbq·4H<sub>2</sub>O and (d) K<sub>2</sub>-btbq·2H<sub>2</sub>O.

a) vbar = 3513, 3457, **1699 (C=O)**, 1612, 1510, 1482, 1396, 1374, 1349, 1182, 1130, 1052, 1022, 978, 925, 754, 716, 694, 672 and 447 cm<sup>-1</sup>.

b) *v*bar = 3432, 3105, **1663 (C=O)**, 1584, 1552, 1496, 1433, 1397, 1197, 1172, 1088, 1040, 997, 806, 760, 707, 691, 572 and 440 cm<sup>-1</sup>.

c) *v*bar = 3560, 3300, 3224, **1673 (C=O)**, 1638, 1603, 1487, 1429, 1388, 1165, 1054, 1022, 979, 763, 695, 536 and 430 cm<sup>-1</sup>.

d) vbar = 3320, 3172, **1664 (C=O)**, 1534, 1486, 1422, 1412, 1385, 1165, 1053, 1018, 973, 760, 699, 599 and 449 cm<sup>-1</sup>.

## 4) Solubility of H<sub>2</sub>-btbq·2H<sub>2</sub>O in alkaline aqueous solutions

The room temperature solubility of  $H_2$ -btbq·2 $H_2O$  in a 1M solution of NaOH and KOH was determined by measuring the absorbance maximum in the visible range at 380 nm and comparing to an absorbance-vs.-concentration calibration curve determined by preparing known concentrations of  $H_2$ -btbq·2 $H_2O$  in the alkaline solutions. UV-Vis spectroscopy measurements were performed using an Agilent Cary 60 spectrophotometer. A stock solution of  $H_2$ -btbq·2 $H_2O$  was prepared by dissolving a known amount of the compound in a known volume of a 1M NaOH or KOH solution. Appropriate aliquots of the  $H_2$ -btbq stock solution were added to 1M NaOH or KOH blank solutions and their UV-Vis absorbance spectra were measured to prepare the calibration curves. Then, saturated solutions of  $H_2$ -btbq·2 $H_2O$  in a 1M NaOH or KOH solution were prepared by adding  $H_2$ -btbq·2 $H_2O$  into the corresponding alkaline solution until a thin layer of precipitate formed. The obtained solutions were filtered through a pad of cotton and a known volume was diluted by known proportions of a 1M NaOH or KOH solution, and the absorbance of the resulting solutions was compared to the calibration curves.

#### Solubility in 1M NaOH:

| Conc. (mg/mL) | Absorbance at 380 nm |
|---------------|----------------------|
| 0.0000        | 0.0000               |
| 0.0125        | 0.0209               |
| 0.0250        | 0.0384               |
| 0.0375        | 0.0620               |
| 0.0500        | 0.0772               |



# Saturated solution:

1 mg of  $H_2$ -btbq·2 $H_2O$  was dispersed in 5 mL of 1M NaOH and the mixture was filtrated through a pad of cotton. 1 mL of the filtrate was mixed with 1 mL of 1M NaOH and the absorption of the solution was measured and re-calculated to the concentration of the saturated solution.

A = 0.0797  $\rightarrow$  c = 0.0504 mg/mL  $\rightarrow \rightarrow$  c<sub>saturated solution</sub> = **0.10 mg/mL** 

## Solubility in 1M KOH:

| Conc. (mg/mL) | Absorbance at 380 nm |
|---------------|----------------------|
| 0.00          | 0.0000               |
| 0.05          | 0.0804               |
| 0.10          | 0.1830               |
| 0.15          | 0.2973               |
| 0.20          | 0.4055               |



# Saturated solution:

5 mg of H<sub>2</sub>-btbq·2H<sub>2</sub>O was dispersed in 500  $\mu$ L of 1M KOH and the mixture was filtrated through a pad of cotton. 100  $\mu$ L of the filtrate was mixed with 1.9 mL of 1M KOH and the absorption of the solution was measured and re-calculated to the concentration of the saturated solution. A = 0.783  $\rightarrow$  c = 0.397 mg/mL  $\rightarrow$   $\rightarrow$  c<sub>saturated solution</sub> = **7.94 mg/mL** 

# Solubility in 1M LiOH:

 $H_2$ -btbq·2 $H_2O$  is very well soluble in a 1M LiOH solution. More than 100 mg could be dissolved in 1 mL, and therefore, the precise value was not determined by the UV-Vis method.

C<sub>saturated solution</sub> = > 100 mg/mL



Fig. S4 Variable temperature XRPD measurements of (a)  $Li_2$ -btbq·4H<sub>2</sub>O, (b) Na<sub>2</sub>-btbq·4H<sub>2</sub>O and (c) K<sub>2</sub>-btbq·2H<sub>2</sub>O exposed to a nitrogen atmosphere.

#### 6) CV measurements of H<sub>2</sub>-btbq·2H<sub>2</sub>O in basic aqueous solutions

The CV measurements were carried out on a biologic SP-300 potentiostat using a conventional threeelectrode system. The electrochemical cell was equipped with a glassy carbon working electrode (3 mm in a diameter), a saturated calomel electrode (SCE) as a reference electrode and a platinum wire counter-electrode. The experiments were carried out at room temperature at different scan rates from 1000 to 10 mV s<sup>-1</sup> in a 1M, oxygen free, aqueous solution of LiOH, NaOH, KOH and Bu<sub>4</sub>NOH. In the case of using a solution of LiOH and KOH, 2 mg of H<sub>2</sub>-btbq·2H<sub>2</sub>O (0.009 mmol) in 10 mL were used. In the case of using a solution of NaOH and Bu<sub>4</sub>NOH, only 1 mg of H<sub>2</sub>-btbq·2H<sub>2</sub>O (0.004 mmol) in 10 mL was used (higher amount was not possible to use due to the limited solubility of H<sub>2</sub>-btbq in the solutions).



Fig. S5 Cyclic voltammograms of  $H_2$ -btbq·2 $H_2O$  in a 1M aqueous solution of LiOH, NaOH, KOH and  $Bu_4NOH$  measured at room temperature at the rate of 100 mV·s<sup>-1</sup>.

| Base   | E <sub>1</sub> <sup>0</sup> (mV) | ΔE (mV) | E <sub>2</sub> <sup>0</sup> (mV) | ΔE (mV) | $E_{1,metal}^o - E_{1,Bu_4NOH}^o$ | $E_{2,metal}^{o} - E_{2,Bu_4NOH}^{o}$ |
|--------|----------------------------------|---------|----------------------------------|---------|-----------------------------------|---------------------------------------|
|        | vs. SCE                          |         | vs. SCE                          |         | (mV)                              | (mV)                                  |
| LiOH   | -782                             | 57      | -928                             | 86      | 86                                | 138                                   |
| NaOH   | -790                             | 57      | -953                             | 88      | 78                                | 113                                   |
| КОН    | -799                             | 57      | -958                             | 106     | 69                                | 108                                   |
| Bu₄NOH | -868                             | 58      | -1066                            | 86      | -                                 | -                                     |

Table S1 Redox potentials ( $E_1^{0}$  and  $E_2^{0}$ ), corresponding anodic and cathodic peak potential differences ( $\Delta E$ ) and differences between the redox potentials in different aqueous basic electrolytes.



Fig. S6 CV measurements of  $H_2$ -btbq·2 $H_2$ O in 1M (a) LiOH, (b) NaOH, (c) KOH and (d)  $Bu_4$ NOH at the scan rate of 10, 25, 50, 100, 200, 500 and 1000 mV·s<sup>-1</sup>.



Fig. S7 Randles-Sevčik plots of  $i_p$  against  $\sqrt{v}$  of H<sub>2</sub>-btbq·2H<sub>2</sub>O in 1M (a) LiOH, (b) NaOH, (c) KOH and (d) Bu<sub>4</sub>NOH. Data refer to the first reduction and the corresponding oxidation wave and indicate a diffusion controlled electrode reaction.

## 7) X-ray single crystal analysis

### Optical microscopy images of H<sub>2</sub>-btbq·2H<sub>2</sub>O and its alkali salts

Images of crystals were taken using an Olympus IX70 microscope equipped with a camera.



Fig. S8 Optical microscopy images of crystals of (a)  $H_2$ -btbq·2 $H_2O$ , (b)  $Li_2$ -btbq·2 $H_2O$ , (c)  $Na_2$ -btbq·4 $H_2O$  and (d)  $K_2$ -btbq·2 $H_2O$ ; scale bar: 50  $\mu$ m (a, b) and 100  $\mu$ m (c, d).





Fig. S9 Simulated (black) and measured (red) XRPD patterns of (a)  $Li_2$ -btbq·2H<sub>2</sub>O, (b)  $Na_2$ -btbq·4H<sub>2</sub>O and (c)  $K_2$ -btbq·2H<sub>2</sub>O (bulk samples).

X-ray single crystal analysis of Li<sub>2</sub>-btbq·2H<sub>2</sub>O



Fig. S10 ORTEP-style plot of the asymmetric units of Li<sub>2</sub>-btbq·2H<sub>2</sub>O. Thermal ellipsoids probability: 50 %.



Fig. S11 Packing diagram of the structure of  $Li_2$ -btbq·2H<sub>2</sub>O, view in *b*- (a) and *c*-direction (b). Li-cations are omitted for clarity.

|       | Х        | у        | Z        | U(eq) |
|-------|----------|----------|----------|-------|
| Li(1) | -6099(6) | -8552(2) | -7101(2) | 11(1) |
| O(1)  | -5759(2) | -6478(1) | -6695(1) | 8(1)  |
| O(2)  | -681(2)  | -9307(1) | -6544(1) | 7(1)  |
| N(1)  | -3330(3) | -3372(1) | -6472(1) | 6(1)  |
| N(2)  | -2243(3) | -2117(1) | -6024(1) | 7(1)  |
| N(3)  | -2464(3) | -2203(1) | -5101(1) | 6(1)  |
| C(1)  | -4270(3) | -4292(1) | -5816(1) | 5(1)  |
| C(2)  | -3738(3) | -3557(1) | -4952(1) | 5(1)  |
| C(3)  | -5500(3) | -5819(1) | -5944(1) | 5(1)  |

Table S2. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) of Li<sub>2</sub>-btbq·2H<sub>2</sub>O. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

Table S3. Bond lengths [Å] and angles [°]of  $Li_2$ -btbq $\cdot 2H_2O$ .

| Li(1)-O(1)        | 1.995(2)    |  |
|-------------------|-------------|--|
| Li(1)-O(2)#1      | 1.998(2)    |  |
| Li(1)-O(2)        | 2.007(2)    |  |
| Li(1)-N(1)#2      | 2.027(2)    |  |
| Li(1)-Li(1)#3     | 3.40910(11) |  |
| Li(1)-Li(1)#1     | 3.40910(11) |  |
| O(1)-C(3)         | 1.2260(13)  |  |
| O(2)-Li(1)#3      | 1.998(2)    |  |
| O(2)-H(1)         | 0.86(2)     |  |
| O(2)-H(2)         | 0.85(2)     |  |
| N(1)-N(2)         | 1.3432(14)  |  |
| N(1)-C(1)         | 1.3459(14)  |  |
| N(1)-Li(1)#4      | 2.027(2)    |  |
| N(2)-N(3)         | 1.3411(13)  |  |
| N(3)-C(2)         | 1.3491(15)  |  |
| C(1)-C(2)         | 1.3951(15)  |  |
| C(1)-C(3)         | 1.4700(16)  |  |
| C(2)-C(3)#5       | 1.4705(15)  |  |
| C(3)-C(2)#5       | 1.4705(15)  |  |
| O(1)-Li(1)-O(2)#1 | 103.11(10)  |  |

| O(1)-Li(1)-O(2)       | 102.26(10) |
|-----------------------|------------|
| O(2)#1-Li(1)-O(2)     | 116.70(11) |
| O(1)-Li(1)-N(1)#2     | 101.96(10) |
| O(2)#1-Li(1)-N(1)#2   | 119.04(11) |
| O(2)-Li(1)-N(1)#2     | 110.64(10) |
| O(1)-Li(1)-Li(1)#3    | 89.54(7)   |
| O(2)#1-Li(1)-Li(1)#3  | 148.27(7)  |
| O(2)-Li(1)-Li(1)#3    | 31.57(7)   |
| N(1)#2-Li(1)-Li(1)#3  | 85.59(7)   |
| O(1)-Li(1)-Li(1)#1    | 90.46(7)   |
| O(2)#1-Li(1)-Li(1)#1  | 31.73(7)   |
| O(2)-Li(1)-Li(1)#1    | 148.43(7)  |
| N(1)#2-Li(1)-Li(1)#1  | 94.41(7)   |
| Li(1)#3-Li(1)-Li(1)#1 | 179.999(2) |
| C(3)-O(1)-Li(1)       | 136.29(10) |
| Li(1)#3-O(2)-Li(1)    | 116.70(11) |
| Li(1)#3-O(2)-H(1)     | 97.5(14)   |
| Li(1)-O(2)-H(1)       | 111.2(14)  |
| Li(1)#3-O(2)-H(2)     | 121.8(14)  |
| Li(1)-O(2)-H(2)       | 107.2(14)  |
| H(1)-O(2)-H(2)        | 100(2)     |
| N(2)-N(1)-C(1)        | 106.65(9)  |
| N(2)-N(1)-Li(1)#4     | 121.58(10) |
| C(1)-N(1)-Li(1)#4     | 131.37(10) |
| N(3)-N(2)-N(1)        | 111.35(9)  |
| N(2)-N(3)-C(2)        | 106.50(9)  |
| N(1)-C(1)-C(2)        | 107.71(10) |
| N(1)-C(1)-C(3)        | 127.75(10) |
| C(2)-C(1)-C(3)        | 124.51(10) |
| N(3)-C(2)-C(1)        | 107.80(10) |
| N(3)-C(2)-C(3)#5      | 127.52(10) |
| C(1)-C(2)-C(3)#5      | 124.68(10) |
| O(1)-C(3)-C(1)        | 124.03(10) |
| O(1)-C(3)-C(2)#5      | 125.19(10) |
| C(1)-C(3)-C(2)#5      | 110.76(9)  |
|                       |            |

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 -x-1,y-1/2,-z-3/2 #3 x+1,y,z

#4 -x-1,y+1/2,-z-3/2 #5 -x-1,-y-1,-z-1

Table S4. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) of Li<sub>2</sub>-btbq·2H<sub>2</sub>O. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [  $h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$ ]

|              | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| <br>Li(1)    | 13(1)           | 10(1)           | 9(1)            | 0(1)            | 2(1)            | 0(1)            |
| <b>O</b> (1) | 12(1)           | 7(1)            | 5(1)            | -2(1)           | 2(1)            | -1(1)           |
| O(2)         | 11(1)           | 5(1)            | 6(1)            | 0(1)            | 1(1)            | -2(1)           |
| N(1)         | 6(1)            | 5(1)            | 6(1)            | 0(1)            | 1(1)            | 0(1)            |
| N(2)         | 8(1)            | 6(1)            | 6(1)            | 0(1)            | 1(1)            | -1(1)           |
| N(3)         | 8(1)            | 5(1)            | 5(1)            | 0(1)            | 1(1)            | 0(1)            |
| C(1)         | 6(1)            | 5(1)            | 4(1)            | 1(1)            | 1(1)            | 1(1)            |
| C(2)         | 6(1)            | 5(1)            | 5(1)            | 0(1)            | 1(1)            | 0(1)            |
| C(3)         | 5(1)            | 5(1)            | 6(1)            | 0(1)            | 0(1)            | 0(1)            |
|              |                 |                 |                 |                 |                 |                 |

Table S5. Hydrogen Bonds.

| DonorHydrogenAcceptor | DonHyd [Å] | HydAcc [Å] | DonAcc [Å] | DHA    |
|-----------------------|------------|------------|------------|--------|
| O2»3H2»3N2»2          | 0.85       | 1.93       | 2.770      | 168.6° |
| O2»4H2»4N2»5          | 0.85       | 1.93       | 2.770      | 168.6° |

# X-ray single crystal analysis of Na<sub>2</sub>-btbq·4H<sub>2</sub>O



Fig. S12 ORTEP-style plot of the asymmetric units Na<sub>2</sub>-btbq·4H<sub>2</sub>O. Thermal ellipsoids probability: 50 %.

a)







|       | Х       | у       | Z       | U(eq) |
|-------|---------|---------|---------|-------|
| Na(1) | 6227(1) | 8116(1) | 5160(1) | 10(1) |
| O(1)  | 5156(1) | 6768(1) | 4867(2) | 10(1) |
| O(2)  | 7757(1) | 7402(1) | 7533(2) | 11(1) |
| O(3)  | 5000    | 8767(1) | 7500    | 13(1) |
| O(4)  | 5000    | 8954(1) | 2500    | 10(1) |
| N(1)  | 2623(1) | 4420(1) | 5611(2) | 8(1)  |
| N(2)  | 2031(1) | 5176(1) | 5797(2) | 9(1)  |
| N(3)  | 2826(1) | 5844(1) | 5611(2) | 8(1)  |
| C(1)  | 5112(2) | 5981(1) | 4958(2) | 7(1)  |
| C(2)  | 3952(1) | 5503(1) | 5286(2) | 7(1)  |
| C(3)  | 3829(1) | 4611(1) | 5295(2) | 6(1)  |
|       |         |         |         |       |

Table S6. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) of Na<sub>2</sub>btbq·4H<sub>2</sub>O. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

Table S7. Bond lengths [Å] and angles [°]of  $Na_2$ -btbq·4H<sub>2</sub>O.

| Na(1)-O(2)    | 2.3458(13) |
|---------------|------------|
| Na(1)-O(1)    | 2.3668(12) |
| Na(1)-O(4)    | 2.4165(11) |
| Na(1)-O(2)#1  | 2.4241(13) |
| Na(1)-O(3)    | 2.4433(9)  |
| Na(1)-N(1)#2  | 2.4838(14) |
| Na(1)-Na(1)#1 | 3.3126(12) |
| Na(1)-Na(1)#3 | 4.0690(12) |
| O(1)-C(1)     | 1.2265(18) |
| O(2)-Na(1)#1  | 2.4241(13) |
| O(2)-H(1)     | 0.837(16)  |
| O(2)-H(2)     | 0.816(16)  |
| O(3)-Na(1)#4  | 2.4433(9)  |
| O(3)-H(3)     | 0.85(2)    |
| O(4)-Na(1)#3  | 2.4165(11) |
| O(4)-H(4)     | 0.83(2)    |
| N(1)-N(2)     | 1.3431(18) |

| N(1)-C(3)             | 1.3480(18) |
|-----------------------|------------|
| N(1)-Na(1)#5          | 2.4838(14) |
| N(2)-N(3)             | 1.3498(18) |
| N(3)-C(2)             | 1.3437(19) |
| C(1)-C(2)             | 1.471(2)   |
| C(1)-C(3)#6           | 1.471(2)   |
| C(2)-C(3)             | 1.394(2)   |
| C(3)-C(1)#6           | 1.471(2)   |
| O(2)-Na(1)-O(1)       | 83.84(4)   |
| O(2)-Na(1)-O(4)       | 169.42(4)  |
| O(1)-Na(1)-O(4)       | 103.57(5)  |
| O(2)-Na(1)-O(2)#1     | 92.04(4)   |
| O(1)-Na(1)-O(2)#1     | 84.56(4)   |
| O(4)-Na(1)-O(2)#1     | 81.29(4)   |
| O(2)-Na(1)-O(3)       | 96.44(4)   |
| O(1)-Na(1)-O(3)       | 97.38(5)   |
| O(4)-Na(1)-O(3)       | 90.15(3)   |
| O(2)#1-Na(1)-O(3)     | 171.44(4)  |
| O(2)-Na(1)-N(1)#2     | 89.36(4)   |
| O(1)-Na(1)-N(1)#2     | 172.39(5)  |
| O(4)-Na(1)-N(1)#2     | 82.73(4)   |
| O(2)#1-Na(1)-N(1)#2   | 92.29(4)   |
| O(3)-Na(1)-N(1)#2     | 86.75(5)   |
| O(2)-Na(1)-Na(1)#1    | 47.00(3)   |
| O(1)-Na(1)-Na(1)#1    | 81.64(4)   |
| O(4)-Na(1)-Na(1)#1    | 125.83(3)  |
| O(2)#1-Na(1)-Na(1)#1  | 45.05(3)   |
| O(3)-Na(1)-Na(1)#1    | 143.43(4)  |
| N(1)#2-Na(1)-Na(1)#1  | 91.22(4)   |
| O(2)-Na(1)-Na(1)#3    | 149.79(3)  |
| O(1)-Na(1)-Na(1)#3    | 73.21(3)   |
| O(4)-Na(1)-Na(1)#3    | 32.66(4)   |
| O(2)#1-Na(1)-Na(1)#3  | 66.89(3)   |
| O(3)-Na(1)-Na(1)#3    | 105.61(2)  |
| N(1)#2-Na(1)-Na(1)#3  | 111.91(3)  |
| Na(1)#1-Na(1)-Na(1)#3 | 108.95(3)  |

| C(1)-O(1)-Na(1)    | 154.22(10) |
|--------------------|------------|
| Na(1)-O(2)-Na(1)#1 | 87.96(4)   |
| Na(1)-O(2)-H(1)    | 123.8(17)  |
| Na(1)#1-O(2)-H(1)  | 106.2(16)  |
| Na(1)-O(2)-H(2)    | 117.5(17)  |
| Na(1)#1-O(2)-H(2)  | 110.5(18)  |
| H(1)-O(2)-H(2)     | 108(2)     |
| Na(1)#4-O(3)-Na(1) | 130.98(8)  |
| Na(1)#4-O(3)-H(3)  | 107.9(17)  |
| Na(1)-O(3)-H(3)    | 100.7(17)  |
| Na(1)#3-O(4)-Na(1) | 114.69(7)  |
| Na(1)#3-O(4)-H(4)  | 114.7(17)  |
| Na(1)-O(4)-H(4)    | 102.4(17)  |
| N(2)-N(1)-C(3)     | 106.31(12) |
| N(2)-N(1)-Na(1)#5  | 117.21(9)  |
| C(3)-N(1)-Na(1)#5  | 134.66(10) |
| N(1)-N(2)-N(3)     | 111.40(12) |
| C(2)-N(3)-N(2)     | 106.33(12) |
| O(1)-C(1)-C(2)     | 123.45(14) |
| O(1)-C(1)-C(3)#6   | 125.59(14) |
| C(2)-C(1)-C(3)#6   | 110.94(12) |
| N(3)-C(2)-C(3)     | 107.97(13) |
| N(3)-C(2)-C(1)     | 126.41(14) |
| C(3)-C(2)-C(1)     | 125.62(13) |
| N(1)-C(3)-C(2)     | 107.97(13) |
| N(1)-C(3)-C(1)#6   | 128.60(14) |
| C(2)-C(3)-C(1)#6   | 123.41(13) |
|                    |            |

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,-y+3/2,-z+1 #2 x+1/2,y+1/2,z #3 -x+1,y,-z+1/2 #4 -x+1,y,-z+3/2 #5 x-1/2,y-1/2,z #6 -x+1,-y+1,-z+1

Table S8. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) of Na<sub>2</sub>-btbq·4H<sub>2</sub>O. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [ h<sup>2</sup>a<sup>\*2</sup>U<sup>11</sup> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sup>12</sup> ]

| <br>     |                 |                 |                 |          |          |
|----------|-----------------|-----------------|-----------------|----------|----------|
| $U^{11}$ | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | $U^{13}$ | $U^{12}$ |
|          |                 |                 |                 |          |          |

| Na(1)        | 9(1)  | 9(1)  | 11(1) | 1(1)  | 2(1)  | -1(1) |
|--------------|-------|-------|-------|-------|-------|-------|
| <b>O</b> (1) | 12(1) | 7(1)  | 12(1) | 0(1)  | 2(1)  | -1(1) |
| O(2)         | 12(1) | 9(1)  | 11(1) | 1(1)  | 1(1)  | -3(1) |
| O(3)         | 11(1) | 15(1) | 13(1) | 0     | 2(1)  | 0     |
| O(4)         | 9(1)  | 10(1) | 12(1) | 0     | 2(1)  | 0     |
| N(1)         | 7(1)  | 10(1) | 8(1)  | -1(1) | 2(1)  | 1(1)  |
| N(2)         | 8(1)  | 10(1) | 10(1) | -1(1) | 2(1)  | -1(1) |
| N(3)         | 7(1)  | 11(1) | 7(1)  | -1(1) | 1(1)  | -1(1) |
| C(1)         | 8(1)  | 8(1)  | 4(1)  | 0(1)  | -1(1) | 0(1)  |
| C(2)         | 7(1)  | 7(1)  | 6(1)  | 0(1)  | 0(1)  | 0(1)  |
| C(3)         | 6(1)  | 8(1)  | 5(1)  | 0(1)  | 1(1)  | -1(1) |

Table S9. Hydrogen Bonds

| DonorHydrogenAcceptor | DonHyd [Å] | HydAcc [Å] | DonAcc [Å] | DHA    |
|-----------------------|------------|------------|------------|--------|
| O2H1N3»2              | 0.84       | 2.02       | 2.851      | 174.2° |
| O2H2O1»12             | 0.82       | 2.23       | 3.012      | 159.5° |
| O3H3N2»12             | 0.85       | 2.43       | 3.256      | 163.9° |
| O4H4N2»11             | 0.83       | 2.12       | 2.927      | 165.8° |
| O2»1H1»1N3»7          | 0.84       | 2.02       | 2.851      | 174.2° |
| O2»2H1»2N3            | 0.84       | 2.02       | 2.851      | 174.2° |
| O2»3H1»3N3»8          | 0.84       | 2.02       | 2.851      | 174.2° |
| O2»3H2»3O1»16         | 0.82       | 2.23       | 3.012      | 159.5° |
| O3»3H3»3N2»16         | 0.85       | 2.43       | 3.256      | 163.9° |
| O4»3H4»3N2»15         | 0.83       | 2.12       | 2.927      | 165.8° |
| O2»4H1»4N3»11         | 0.84       | 2.02       | 2.851      | 174.2° |
| O2»4H2»4O1»1          | 0.82       | 2.23       | 3.012      | 159.5° |
| O3»4H3»4N2»1          | 0.85       | 2.43       | 3.256      | 163.9° |
| O4»4H4»4N2»2          | 0.83       | 2.12       | 2.927      | 165.8° |
| O2»5H1»5N3»13         | 0.84       | 2.02       | 2.851      | 174.2° |
| O2»6H1»6N3»15         | 0.84       | 2.02       | 2.851      | 174.2° |
| O2»6H2»6O1»10         | 0.82       | 2.23       | 3.012      | 159.5° |
| O3»6H3»6N2»10         | 0.85       | 2.43       | 3.256      | 163.9° |
| O4»6H4»6N2»8          | 0.83       | 2.12       | 2.927      | 165.8° |
| O2»7H1»7N3»1          | 0.84       | 2.02       | 2.851      | 174.2° |
| O2»7H2»7O1»11         | 0.82       | 2.23       | 3.012      | 159.5° |
| O3»1H3»7N2»11         | 0.85       | 2.43       | 3.256      | 163.9° |
| O2»8H1»8N3»3          | 0.84       | 2.02       | 2.851      | 174.2° |
| O4»2H4»9N2»12         | 0.83       | 2.12       | 2.927      | 165.8° |
| O2»11H1»11N3»4        | 0.84       | 2.02       | 2.851      | 174.2° |
| O2»13H1»13N3»5        | 0.84       | 2.02       | 2.851      | 174.2° |
| O2»15H1»15N3»6        | 0.84       | 2.02       | 2.851      | 174.2° |

X-ray single crystal analysis of K<sub>2</sub>-btbq·2H<sub>2</sub>O



Fig. S14 ORTEP-style plot of the asymmetric units  $K_2$ -btbq·2H<sub>2</sub>O. Thermal ellipsoids probability: 50 %. Hydrogen atoms have been omitted for clarity.



Fig. S15 Packing diagram of the structure of  $K_2$ -btbq·2H<sub>2</sub>O, view in a- (a) and b-direction (b). K-cations are omitted for clarity.

|      | X       | у       | Z       | U(eq) |
|------|---------|---------|---------|-------|
| K(1) | 1269(1) | 5766(1) | 2423(1) | 18(1) |
| K(2) | 3740(1) | 7477(1) | 5941(2) | 16(1) |
| O(1) | 8346(3) | 3865(2) | 7006(5) | 15(1) |
| O(2) | 4200(3) | 6096(2) | 5059(4) | 15(1) |
| O(3) | 6730(3) | 7790(2) | 6180(5) | 17(1) |
| O(4) | 774(3)  | 7142(2) | 5521(5) | 18(1) |
| N(1) | 7560(3) | 6321(2) | 6714(5) | 13(1) |
| N(2) | 9038(4) | 6139(2) | 7447(6) | 14(1) |
| N(3) | 9223(4) | 5414(2) | 7556(6) | 13(1) |
| N(4) | 3323(3) | 4536(2) | 4663(5) | 13(1) |
| N(5) | 3512(4) | 3807(2) | 4732(6) | 16(1) |
| N(6) | 4986(4) | 3627(2) | 5428(6) | 17(1) |
| C(1) | 5131(4) | 5596(2) | 5527(6) | 12(1) |
| C(2) | 6779(4) | 5697(2) | 6356(6) | 13(1) |
| C(3) | 7812(4) | 5128(2) | 6876(6) | 10(1) |
| C(4) | 7415(4) | 4359(2) | 6613(5) | 11(1) |
| C(5) | 5763(4) | 4260(2) | 5828(5) | 11(1) |
| C(6) | 4731(4) | 4825(2) | 5351(6) | 11(1) |
|      |         |         |         |       |

Table S10. Atomic coordinates ( x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) of of K<sub>2</sub>btbq·2H<sub>2</sub>O. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

Table S11. Bond lengths [Å] and angles [°] of of  $K_2$ -btbq $\cdot 2H_2O$ .

| 2.757(3) |
|----------|
| 2.759(3) |
| 2.851(3) |
| 2.926(3) |
| 3.000(3) |
| 3.075(3) |
| 3.091(3) |
| 3.204(3) |
| 3.237(4) |
| 3.338(3) |
|          |

| K(1)-C(4)#1  | 3.495(3)   |
|--------------|------------|
| K(1)-C(1)    | 3.502(3)   |
| K(2)-O(2)    | 2.674(3)   |
| K(2)-O(1)#5  | 2.703(3)   |
| K(2)-O(4)    | 2.783(3)   |
| K(2)-O(3)    | 2.828(3)   |
| K(2)-O(4)#6  | 2.959(3)   |
| K(2)-O(3)#2  | 2.999(3)   |
| K(2)-N(1)#2  | 3.356(3)   |
| K(2)-N(6)#7  | 3.363(4)   |
| K(2)-N(5)#7  | 3.433(4)   |
| K(2)-N(2)#2  | 3.452(4)   |
| K(2)-K(1)#6  | 3.9364(12) |
| K(2)-H(3)    | 3.02(5)    |
| O(1)-C(4)    | 1.227(5)   |
| O(1)-K(2)#8  | 2.703(3)   |
| O(1)-K(1)#9  | 2.759(3)   |
| O(2)-C(1)    | 1.234(4)   |
| O(3)-K(1)#6  | 2.851(3)   |
| O(3)-K(2)#6  | 2.999(3)   |
| O(3)-H(1)    | 0.88(2)    |
| O(3)-H(2)    | 0.89(2)    |
| O(4)-K(2)#2  | 2.959(3)   |
| O(4)-H(3)    | 0.891(19)  |
| O(4)-H(4)    | 0.873(19)  |
| N(1)-C(2)    | 1.342(5)   |
| N(1)-N(2)    | 1.349(4)   |
| N(1)-K(2)#6  | 3.356(3)   |
| N(2)-N(3)    | 1.346(5)   |
| N(2)-K(1)#10 | 3.204(3)   |
| N(2)-K(2)#6  | 3.452(4)   |
| N(3)-C(3)    | 1.354(5)   |
| N(3)-K(1)#9  | 2.926(3)   |
| N(3)-K(1)#10 | 3.091(3)   |
| N(4)-C(6)    | 1.354(4)   |
| N(4)-N(5)    | 1.354(5)   |

| N(4)-K(1)#7        | 3.075(3)   |
|--------------------|------------|
| N(5)-N(6)          | 1.346(5)   |
| N(5)-K(1)#7        | 3.237(4)   |
| N(5)-K(2)#3        | 3.433(4)   |
| N(6)-C(5)          | 1.354(5)   |
| N(6)-K(2)#3        | 3.363(4)   |
| C(1)-C(6)          | 1.464(6)   |
| C(1)-C(2)          | 1.469(5)   |
| C(2)-C(3)          | 1.390(5)   |
| C(3)-C(4)          | 1.461(5)   |
| C(4)-C(5)          | 1.472(5)   |
| C(4)-K(1)#9        | 3.495(3)   |
| C(5)-C(6)          | 1.385(5)   |
| O(2)-K(1)-O(1)#1   | 139.59(9)  |
| O(2)-K(1)-O(3)#2   | 75.26(9)   |
| O(1)#1-K(1)-O(3)#2 | 89.19(9)   |
| O(2)-K(1)-N(3)#1   | 132.71(9)  |
| O(1)#1-K(1)-N(3)#1 | 62.60(9)   |
| O(3)#2-K(1)-N(3)#1 | 150.01(9)  |
| O(2)-K(1)-N(4)     | 62.10(8)   |
| O(1)#1-K(1)-N(4)   | 133.69(9)  |
| O(3)#2-K(1)-N(4)   | 134.51(9)  |
| N(3)#1-K(1)-N(4)   | 75.47(8)   |
| O(2)-K(1)-N(4)#3   | 71.92(8)   |
| O(1)#1-K(1)-N(4)#3 | 142.50(9)  |
| O(3)#2-K(1)-N(4)#3 | 79.97(9)   |
| N(3)#1-K(1)-N(4)#3 | 115.61(10) |
| N(4)-K(1)-N(4)#3   | 72.71(8)   |
| O(2)-K(1)-N(3)#4   | 143.18(9)  |
| O(1)#1-K(1)-N(3)#4 | 72.43(9)   |
| O(3)#2-K(1)-N(3)#4 | 91.26(9)   |
| N(3)#1-K(1)-N(3)#4 | 71.50(8)   |
| N(4)-K(1)-N(3)#4   | 113.10(10) |
| N(4)#3-K(1)-N(3)#4 | 72.05(8)   |
| O(2)-K(1)-N(2)#4   | 136.80(9)  |
| O(1)#1-K(1)-N(2)#4 | 63.84(9)   |

| O(3)#2-K(1)-N(2)#4 | 68.79(9)   |
|--------------------|------------|
| N(3)#1-K(1)-N(2)#4 | 88.45(9)   |
| N(4)-K(1)-N(2)#4   | 136.46(10) |
| N(4)#3-K(1)-N(2)#4 | 78.82(9)   |
| N(3)#4-K(1)-N(2)#4 | 24.61(9)   |
| O(2)-K(1)-N(5)#3   | 64.33(8)   |
| O(1)#1-K(1)-N(5)#3 | 134.50(9)  |
| O(3)#2-K(1)-N(5)#3 | 55.82(9)   |
| N(3)#1-K(1)-N(5)#3 | 138.77(10) |
| N(4)-K(1)-N(5)#3   | 90.08(9)   |
| N(4)#3-K(1)-N(5)#3 | 24.60(9)   |
| N(3)#4-K(1)-N(5)#3 | 79.65(9)   |
| N(2)#4-K(1)-N(5)#3 | 75.79(8)   |
| O(2)-K(1)-O(4)     | 77.88(8)   |
| O(1)#1-K(1)-O(4)   | 62.07(8)   |
| O(3)#2-K(1)-O(4)   | 61.26(7)   |
| N(3)#1-K(1)-O(4)   | 108.66(9)  |
| N(4)-K(1)-O(4)     | 119.58(9)  |
| N(4)#3-K(1)-O(4)   | 135.72(9)  |
| N(3)#4-K(1)-O(4)   | 125.55(8)  |
| N(2)#4-K(1)-O(4)   | 103.84(9)  |
| N(5)#3-K(1)-O(4)   | 112.01(8)  |
| O(2)-K(1)-C(4)#1   | 151.15(9)  |
| O(1)#1-K(1)-C(4)#1 | 18.21(9)   |
| O(3)#2-K(1)-C(4)#1 | 105.68(9)  |
| N(3)#1-K(1)-C(4)#1 | 45.08(9)   |
| N(4)-K(1)-C(4)#1   | 119.19(9)  |
| N(4)#3-K(1)-C(4)#1 | 136.93(8)  |
| N(3)#4-K(1)-C(4)#1 | 65.24(9)   |
| N(2)#4-K(1)-C(4)#1 | 64.81(8)   |
| N(5)#3-K(1)-C(4)#1 | 140.57(8)  |
| O(4)-K(1)-C(4)#1   | 77.71(8)   |
| O(2)-K(1)-C(1)     | 18.23(8)   |
| O(1)#1-K(1)-C(1)   | 152.21(9)  |
| O(3)#2-K(1)-C(1)   | 90.63(9)   |
| N(3)#1-K(1)-C(1)   | 118.98(9)  |

| N(4)-K(1)-C(1)     | 44.86(9)   |
|--------------------|------------|
| N(4)#3-K(1)-C(1)   | 64.41(8)   |
| N(3)#4-K(1)-C(1)   | 135.35(9)  |
| N(2)#4-K(1)-C(1)   | 140.69(9)  |
| N(5)#3-K(1)-C(1)   | 65.02(9)   |
| O(4)-K(1)-C(1)     | 93.79(8)   |
| C(4)#1-K(1)-C(1)   | 154.39(9)  |
| O(2)-K(2)-O(1)#5   | 177.69(10) |
| O(2)-K(2)-O(4)     | 89.94(10)  |
| O(1)#5-K(2)-O(4)   | 90.81(9)   |
| O(2)-K(2)-O(3)     | 88.54(9)   |
| O(1)#5-K(2)-O(3)   | 90.80(9)   |
| O(4)-K(2)-O(3)     | 177.49(11) |
| O(2)-K(2)-O(4)#6   | 109.51(9)  |
| O(1)#5-K(2)-O(4)#6 | 68.21(9)   |
| O(4)-K(2)-O(4)#6   | 115.79(11) |
| O(3)-K(2)-O(4)#6   | 66.63(8)   |
| O(2)-K(2)-O(3)#2   | 74.03(8)   |
| O(1)#5-K(2)-O(3)#2 | 108.27(9)  |
| O(4)-K(2)-O(3)#2   | 66.62(8)   |
| O(3)-K(2)-O(3)#2   | 111.01(11) |
| O(4)#6-K(2)-O(3)#2 | 175.38(10) |
| O(2)-K(2)-N(1)#2   | 119.59(9)  |
| O(1)#5-K(2)-N(1)#2 | 62.57(8)   |
| O(4)-K(2)-N(1)#2   | 91.45(9)   |
| O(3)-K(2)-N(1)#2   | 87.57(9)   |
| O(4)#6-K(2)-N(1)#2 | 123.45(9)  |
| O(3)#2-K(2)-N(1)#2 | 52.00(8)   |
| O(2)-K(2)-N(6)#7   | 64.31(8)   |
| O(1)#5-K(2)-N(6)#7 | 113.52(9)  |
| O(4)-K(2)-N(6)#7   | 89.56(9)   |
| O(3)-K(2)-N(6)#7   | 91.57(9)   |
| O(4)#6-K(2)-N(6)#7 | 52.72(9)   |
| O(3)#2-K(2)-N(6)#7 | 131.84(9)  |
| N(1)#2-K(2)-N(6)#7 | 175.97(10) |
| O(2)-K(2)-N(5)#7   | 62.88(9)   |

| O(1)#5-K(2)-N(5)#7 | 115.47(9)  |
|--------------------|------------|
| O(4)-K(2)-N(5)#7   | 67.08(9)   |
| O(3)-K(2)-N(5)#7   | 113.88(9)  |
| O(4)#6-K(2)-N(5)#7 | 69.63(9)   |
| O(3)#2-K(2)-N(5)#7 | 114.93(9)  |
| N(1)#2-K(2)-N(5)#7 | 158.53(8)  |
| N(6)#7-K(2)-N(5)#7 | 22.81(8)   |
| O(2)-K(2)-N(2)#2   | 120.92(9)  |
| O(1)#5-K(2)-N(2)#2 | 60.67(9)   |
| O(4)-K(2)-N(2)#2   | 113.83(9)  |
| O(3)-K(2)-N(2)#2   | 65.40(8)   |
| O(4)#6-K(2)-N(2)#2 | 106.63(9)  |
| O(3)#2-K(2)-N(2)#2 | 68.79(8)   |
| N(1)#2-K(2)-N(2)#2 | 22.81(7)   |
| N(6)#7-K(2)-N(2)#2 | 155.21(9)  |
| N(5)#7-K(2)-N(2)#2 | 175.77(10) |
| O(2)-K(2)-K(1)#6   | 134.77(6)  |
| O(1)#5-K(2)-K(1)#6 | 44.46(6)   |
| O(4)-K(2)-K(1)#6   | 135.26(8)  |
| O(3)-K(2)-K(1)#6   | 46.36(6)   |
| O(4)#6-K(2)-K(1)#6 | 55.75(7)   |
| O(3)#2-K(2)-K(1)#6 | 119.68(7)  |
| N(1)#2-K(2)-K(1)#6 | 69.79(6)   |
| N(6)#7-K(2)-K(1)#6 | 106.85(6)  |
| N(5)#7-K(2)-K(1)#6 | 125.37(6)  |
| N(2)#2-K(2)-K(1)#6 | 50.88(6)   |
| O(2)-K(2)-K(1)     | 41.87(6)   |
| O(1)#5-K(2)-K(1)   | 139.81(6)  |
| O(4)-K(2)-K(1)     | 54.11(7)   |
| O(3)-K(2)-K(1)     | 123.69(7)  |
| O(4)#6-K(2)-K(1)   | 140.47(7)  |
| O(3)#2-K(2)-K(1)   | 44.14(6)   |
| N(1)#2-K(2)-K(1)   | 95.95(6)   |
| N(6)#7-K(2)-K(1)   | 87.81(6)   |
| N(5)#7-K(2)-K(1)   | 71.90(6)   |
| N(2)#2-K(2)-K(1)   | 112.10(6)  |

| K(1)#6-K(2)-K(1)   | 161.30(4)  |
|--------------------|------------|
| O(2)-K(2)-H(3)     | 106.8(6)   |
| O(1)#5-K(2)-H(3)   | 73.9(6)    |
| O(4)-K(2)-H(3)     | 17.0(5)    |
| O(3)-K(2)-H(3)     | 164.7(6)   |
| O(4)#6-K(2)-H(3)   | 106.7(9)   |
| O(3)#2-K(2)-H(3)   | 74.5(10)   |
| N(1)#2-K(2)-H(3)   | 85.1(10)   |
| N(6)#7-K(2)-H(3)   | 94.8(11)   |
| N(5)#7-K(2)-H(3)   | 74.3(10)   |
| N(2)#2-K(2)-H(3)   | 105.4(10)  |
| K(1)#6-K(2)-H(3)   | 118.3(6)   |
| K(1)-K(2)-H(3)     | 70.6(6)    |
| C(4)-O(1)-K(2)#8   | 143.1(2)   |
| C(4)-O(1)-K(1)#9   | 117.2(2)   |
| K(2)#8-O(1)-K(1)#9 | 92.21(9)   |
| C(1)-O(2)-K(2)     | 144.3(2)   |
| C(1)-O(2)-K(1)     | 117.5(2)   |
| K(2)-O(2)-K(1)     | 97.80(8)   |
| K(2)-O(3)-K(1)#6   | 87.77(9)   |
| K(2)-O(3)-K(2)#6   | 106.96(10) |
| K(1)#6-O(3)-K(2)#6 | 88.76(9)   |
| K(2)-O(3)-H(1)     | 130(9)     |
| K(1)#6-O(3)-H(1)   | 74(9)      |
| K(2)#6-O(3)-H(1)   | 119(8)     |
| K(2)-O(3)-H(2)     | 102(7)     |
| K(1)#6-O(3)-H(2)   | 167(8)     |
| K(2)#6-O(3)-H(2)   | 80(8)      |
| H(1)-O(3)-H(2)     | 105(10)    |
| K(2)-O(4)-K(2)#2   | 109.26(11) |
| K(2)-O(4)-K(1)     | 83.40(8)   |
| K(2)#2-O(4)-K(1)   | 77.12(7)   |
| K(2)-O(4)-H(3)     | 97(4)      |
| K(2)#2-O(4)-H(3)   | 88(4)      |
| K(1)-O(4)-H(3)     | 164(4)     |
| K(2)-O(4)-H(4)     | 140(3)     |

| K(2)#2-O(4)-H(4)    | 109(3)     |
|---------------------|------------|
| K(1)-O(4)-H(4)      | 93(3)      |
| H(3)-O(4)-H(4)      | 96(5)      |
| C(2)-N(1)-N(2)      | 106.6(3)   |
| C(2)-N(1)-K(2)#6    | 135.4(2)   |
| N(2)-N(1)-K(2)#6    | 82.6(2)    |
| N(3)-N(2)-N(1)      | 111.4(3)   |
| N(3)-N(2)-K(1)#10   | 73.0(2)    |
| N(1)-N(2)-K(1)#10   | 129.9(2)   |
| N(3)-N(2)-K(2)#6    | 137.6(3)   |
| N(1)-N(2)-K(2)#6    | 74.6(2)    |
| K(1)#10-N(2)-K(2)#6 | 72.40(8)   |
| N(2)-N(3)-C(3)      | 105.9(3)   |
| N(2)-N(3)-K(1)#9    | 144.2(2)   |
| C(3)-N(3)-K(1)#9    | 106.6(2)   |
| N(2)-N(3)-K(1)#10   | 82.4(2)    |
| C(3)-N(3)-K(1)#10   | 127.2(2)   |
| K(1)#9-N(3)-K(1)#10 | 89.69(9)   |
| C(6)-N(4)-N(5)      | 106.1(3)   |
| C(6)-N(4)-K(1)      | 104.8(2)   |
| N(5)-N(4)-K(1)      | 145.2(2)   |
| C(6)-N(4)-K(1)#7    | 128.8(2)   |
| N(5)-N(4)-K(1)#7    | 84.4(2)    |
| K(1)-N(4)-K(1)#7    | 88.65(9)   |
| N(6)-N(5)-N(4)      | 111.3(3)   |
| N(6)-N(5)-K(1)#7    | 132.4(2)   |
| N(4)-N(5)-K(1)#7    | 71.0(2)    |
| N(6)-N(5)-K(2)#3    | 75.7(2)    |
| N(4)-N(5)-K(2)#3    | 134.5(2)   |
| K(1)#7-N(5)-K(2)#3  | 138.30(11) |
| N(5)-N(6)-C(5)      | 106.2(3)   |
| N(5)-N(6)-K(2)#3    | 81.5(2)    |
| C(5)-N(6)-K(2)#3    | 133.5(2)   |
| O(2)-C(1)-C(6)      | 124.2(3)   |
| O(2)-C(1)-C(2)      | 124.6(4)   |
| C(6)-C(1)-C(2)      | 111.2(3)   |

| O(2)-C(1)-K(1)   | 44.32(17) |
|------------------|-----------|
| C(6)-C(1)-K(1)   | 81.58(19) |
| C(2)-C(1)-K(1)   | 162.6(3)  |
| N(1)-C(2)-C(3)   | 107.9(3)  |
| N(1)-C(2)-C(1)   | 128.2(4)  |
| C(3)-C(2)-C(1)   | 123.9(4)  |
| N(3)-C(3)-C(2)   | 108.2(3)  |
| N(3)-C(3)-C(4)   | 126.7(3)  |
| C(2)-C(3)-C(4)   | 125.0(3)  |
| O(1)-C(4)-C(3)   | 124.0(3)  |
| O(1)-C(4)-C(5)   | 125.1(4)  |
| C(3)-C(4)-C(5)   | 110.9(3)  |
| O(1)-C(4)-K(1)#9 | 44.62(19) |
| C(3)-C(4)-K(1)#9 | 80.49(19) |
| C(5)-C(4)-K(1)#9 | 164.8(2)  |
| N(6)-C(5)-C(6)   | 108.3(3)  |
| N(6)-C(5)-C(4)   | 127.5(3)  |
| C(6)-C(5)-C(4)   | 124.2(4)  |
| N(4)-C(6)-C(5)   | 108.1(3)  |
| N(4)-C(6)-C(1)   | 127.2(3)  |
| C(5)-C(6)-C(1)   | 124.7(3)  |
|                  |           |

Symmetry transformations used to generate equivalent atoms: #1 x-1,-y+1,z-1/2 #2 x-1/2,-y+3/2,z-1/2 #3 x,-y+1,z-1/2 #4 x-1,y,z-1 #5 x-1/2,y+1/2,z #6 x+1/2,-y+3/2,z+1/2 #7 x,-y+1,z+1/2 #8 x+1/2,y-1/2,z #9 x+1,-y+1,z+1/2 #10 x+1,y,z+1

Table S12. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) of K<sub>2</sub>-btbq·2H<sub>2</sub>O.

| The | anisotropic | displac | ement factor | exponen | t takes t | he form: | $-2\pi^{2}[h^{2}a^{*}]$ | $^{2}U^{11} +$ | + 2 h k a* | b* U <sup>12</sup> |
|-----|-------------|---------|--------------|---------|-----------|----------|-------------------------|----------------|------------|--------------------|
|     |             |         |              |         |           |          | L                       |                |            |                    |

|      | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| K(1) | 6(1)            | 23(1)           | 22(1)           | 4(1)            | 1(1)            | -1(1)           |
| K(2) | 10(1)           | 19(1)           | 18(1)           | -3(1)           | 4(1)            | 0(1)            |

| C(0)         | /(1)  | 10(2) | 0(1)  | 1(1)  | 2(1)  | -3(1) |
|--------------|-------|-------|-------|-------|-------|-------|
| C(6)         | 7(1)  | 18(2) | 6(1)  | 1(1)  | 2(1)  | 3(1)  |
| C(5)         | 9(1)  | 19(2) | 6(1)  | 0(1)  | 2(1)  | 0(1)  |
| C(4)         | 10(2) | 18(2) | 8(2)  | -1(1) | 6(1)  | 2(1)  |
| C(3)         | 6(1)  | 17(2) | 6(1)  | 1(1)  | 2(1)  | 1(1)  |
| C(2)         | 6(1)  | 21(2) | 10(1) | 0(1)  | 2(1)  | -2(1) |
| C(1)         | 6(1)  | 19(2) | 8(2)  | 1(1)  | -1(1) | 3(1)  |
| N(6)         | 10(1) | 17(2) | 20(2) | 2(1)  | 2(1)  | -2(1) |
| N(5)         | 12(1) | 17(2) | 17(2) | -1(1) | 2(1)  | -4(1) |
| N(4)         | 8(1)  | 18(2) | 13(1) | 1(1)  | 4(1)  | -3(1) |
| N(3)         | 10(1) | 16(2) | 12(1) | 3(1)  | 3(1)  | -1(1) |
| N(2)         | 10(1) | 18(2) | 15(2) | 3(1)  | 3(1)  | -4(1) |
| N(1)         | 10(1) | 12(2) | 16(2) | -2(1) | 1(1)  | -2(1) |
| O(4)         | 16(1) | 25(2) | 18(1) | -1(1) | 10(1) | -2(1) |
| O(3)         | 18(1) | 16(1) | 20(1) | -1(1) | 10(1) | -1(1) |
| O(2)         | 9(1)  | 19(1) | 14(1) | -2(1) | 2(1)  | 3(1)  |
| <b>O</b> (1) | 10(1) | 17(1) | 17(1) | 2(1)  | 3(1)  | 2(1)  |

Table S13. Hydrogen Bonds for  $K_2$ -btbq $\cdot 2H_2O$ 

| DonorHydrogenAcceptor | DonHyd [Å] | HydAcc [Å] | DonAcc [Å] | DHA    |
|-----------------------|------------|------------|------------|--------|
| O3H2N1                | 0.89       | 1.97       | 2.805      | 156.9° |
| O4H3N6»2              | 0.89       | 2.02       | 2.831      | 150.8° |
| O3»1H2»1N1»1          | 0.89       | 1.97       | 2.805      | 156.9° |
| O4»1H3»1N6            | 0.89       | 2.02       | 2.831      | 150.8° |
| O3»2H2»2N1»2          | 0.89       | 1.97       | 2.805      | 156.9° |
| O3»3H1»3N5»6          | 0.88       | 2.05       | 2.870      | 154.6° |
| O3»3H2»3N1»3          | 0.89       | 1.97       | 2.805      | 156.9° |
| O4»3H3»3N6»10         | 0.89       | 2.02       | 2.831      | 150.8° |
| O3»4H1»4N5»9          | 0.88       | 2.05       | 2.870      | 154.6° |
| O3»4H2»4N1»4          | 0.89       | 1.97       | 2.805      | 156.9° |
| O4»4H3»4N6»5          | 0.89       | 2.02       | 2.831      | 150.8° |
| O3»5H2»5N1»5          | 0.89       | 1.97       | 2.805      | 156.9° |
| O3»6H2»6N1»6          | 0.89       | 1.97       | 2.805      | 156.9° |
| O4»6H4»6N2»10         | 0.87       | 2.13       | 2.994      | 173.2° |
| O3»7H2»7N1»7          | 0.89       | 1.97       | 2.805      | 156.9° |
| O3»8H2»8N1»8          | 0.89       | 1.97       | 2.805      | 156.9° |
| O3»9H2»9N1»9          | 0.89       | 1.97       | 2.805      | 156.9° |
| O4»9H4»9N2»5          | 0.87       | 2.13       | 2.994      | 173.2° |
| O3»10H2»10N1»10       | 0.89       | 1.97       | 2.805      | 156.9° |