Electronic supplementary information

## A unique zinc-organic framework constructed through *in situ* ligand synthesis for conversion of CO<sub>2</sub> under mild conditions and as a luminescent sensor for $Cr_2O_7^{2-}/CrO_4^{2-}$

Tian-Qun Song,<sup>a</sup> Jie Dong,<sup>b</sup> Hong-Ling Gao,<sup>a</sup> Jian-Zhong Cui,<sup>\*a</sup> Bin Zhao<sup>\*b</sup>

a. Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical engineering Education, Tianjin University, Tianjin 300072, P. R. China

b. Department of Chemistry, Nankai University, Tianjin 300071, P. R. China

E-mail: cuijianzhong@tju.edu.cn and zhaobin@nankai.edu.cn

## List of Contents

## **Supplementary Experimental Section**

**Table S1.** Selected bond lengths (Å) and bond angles (°) for compound **1**.

**Table S2.** Hydrogen bonding data for 1.

Figure S1. The FT-IR spectra of compound 1 and after catalytic recyclings.

**Figure S2.** The PXRD patterns for the simulated and as-synthesized samples for **1** (a); The PXRD patterns for **1** immersing in common organic solvents (b); The PXRD patterns for **1** in various pH values solutions from 1.0 to 14.0 (c).

Figure S3. TG curve for compound 1.

Figure S4. The PXRD patterns of 1 after six catalytic recyclings and simulated one from 1.

Figure S5. CO<sub>2</sub> isotherm of 1 at 273 K.

Figure S6. The possible mechanism for the cycloaddition reaction with epoxides and CO<sub>2</sub>.

**Figure S7.** The emission spectrum of 1 ( $\lambda_{\text{excited}} = 270 \text{ nm}$ ).

**Figure S8.** The luminescence intensity of  $1-Cr_2O_7^{2-}$  (a) and  $1-CrO_4^{2-}$  (b) under mixed anions.

Figure S9. The PXRD patterns of 1 after luminescent recycling and simulated one from 1.

Figure S10. The UV-vis spectra of the K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> and K<sub>2</sub>CrO<sub>4</sub> solutions.

 Table S3. The ICP results of 1 after catalytic recyclings (filter liquor) and luminescent recyclings (soild sample), respectively.

| 2.071(5) | Zn2-N1                                                                                                                                                                                                                         | 2.046 (7)                                                                                                                                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.222(6) | Zn2-O3#1                                                                                                                                                                                                                       | 1.915(6)                                                                                                                                                                                                 |
| 2.222(6) | Zn2-O3                                                                                                                                                                                                                         | 1.922(5)                                                                                                                                                                                                 |
| 2.086(7) | Zn2#3-O3                                                                                                                                                                                                                       | 1.915(5)                                                                                                                                                                                                 |
| 2.086(7) | Zn2-O5                                                                                                                                                                                                                         | 1.997(6)                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                                |                                                                                                                                                                                                          |
| 180.0(4) | O3#1-Zn2-N1                                                                                                                                                                                                                    | 101.2(3)                                                                                                                                                                                                 |
| 90.8(2)  | O3-Zn2-N1                                                                                                                                                                                                                      | 108.5(3)                                                                                                                                                                                                 |
| 89.2(2)  | O3-Zn2- O3#1                                                                                                                                                                                                                   | 116.6(2)                                                                                                                                                                                                 |
| 87.4(2)  | O5-Zn2- O3#1                                                                                                                                                                                                                   | 107.4(2)                                                                                                                                                                                                 |
| 92.6(2)  | O3-Zn2-O5                                                                                                                                                                                                                      | 118.6(2)                                                                                                                                                                                                 |
| 87.4(2)  | O5-Zn2-N1                                                                                                                                                                                                                      | 102.1(3)                                                                                                                                                                                                 |
| 180.0(3) | N8-Zn1-N1                                                                                                                                                                                                                      | 127.3(6)                                                                                                                                                                                                 |
| 89.5(3)  | C12-Zn2-N1                                                                                                                                                                                                                     | 126.6(5)                                                                                                                                                                                                 |
| 90.5(3)  | Zn2-O3-Zn2#3                                                                                                                                                                                                                   | 127.4(3)                                                                                                                                                                                                 |
| 133.6(6) | C1-O5-Zn2                                                                                                                                                                                                                      | 112.8(5)                                                                                                                                                                                                 |
| 126.8(5) | N11-Zn1- C12#5                                                                                                                                                                                                                 | 125.3(6)                                                                                                                                                                                                 |
|          | $\begin{array}{c} 2.071(5) \\ 2.222(6) \\ 2.222(6) \\ 2.086(7) \\ 2.086(7) \\ \hline \\ 180.0(4) \\ 90.8(2) \\ 89.2(2) \\ 87.4(2) \\ 92.6(2) \\ 87.4(2) \\ 180.0(3) \\ 89.5(3) \\ 90.5(3) \\ 133.6(6) \\ 126.8(5) \end{array}$ | $\begin{array}{c cccc} 2.071(5) & Zn2-N1 \\ 2.222(6) & Zn2-O3\#1 \\ 2.222(6) & Zn2-O3 \\ 2.086(7) & Zn2\#3-O3 \\ 2.086(7) & Zn2-O5 \\ \end{array}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Table S1. Selected bond lengths (Å) and bond angles (°) for compound 1.

 Table S2. Hydrogen bonding data for compound 1.

| D–H···A          | d(D–H) (Å) | $d(H \cdots A) (Å)$ | $d(D \cdots A)$ (Å) | $D-H\cdots A(^{\circ})$ |
|------------------|------------|---------------------|---------------------|-------------------------|
| O(7)-H(7A)-O(5)  | 0.90       | 2.54                | 3.0759              | 118                     |
| O(7)-H(7B)-N(8)  | 0.85       | 2.04                | 2.8839              | 176                     |
| C(13)-H(13B)-O(5 | i) 0.97    | 2.37                | 3.3380              | 176                     |
|                  |            |                     |                     |                         |



Figure S1. The FT-IR spectra of compound 1 and after catalytic recyclings.

<sup>#1 +</sup>X, 1/2-Y, 1/2+Z; #2 -X, -Y, -Z, #3 +X, 1/2-Y, -1/2+Z; #4 1-X, 1/2+Y, 1/2-Z; #5 1-X, -1/2+Y, 1/2-Z





**Figure S2.** (a) The PXRD patterns for the simulated and as-synthesized samples for 1; (b) The PXRD patterns for 1 immersing in common organic solvents; (c) The PXRD patterns for 1 in various pH values solutions from 1.0 to 14.0.



Figure S3. TG curve for compound 1.



Figure S4. The PXRD patterns of 1 after catalytic recyclings and simulated one from 1.



Figure S5. CO<sub>2</sub> isotherm of 1 at 273 K.



Figure S6. The possible mechanism for the cycloaddition reaction with epoxides and  $CO_2$  into cyclic carbonates.



Figure S7. The emission spectrum of 1 ( $\lambda_{\text{excited}} = 270 \text{ nm}$ ).



Figure S8. The luminescence intensity of  $1-Cr_2O_7^{2-}$  (a) and  $1-CrO_4^{2-}$  (b) under mixed anions.



Figure S9. The PXRD patterns of 1 after luminescent recycling and simulated one from 1.



Figure S10. The UV-vis spectra of the  $K_2Cr_2O_7$  and  $K_2CrO_4$  solutions. Table S3. The ICP results of 1 after catalytic recyclings (filter liquor) and luminescent recyclings (soild sample), respectively.

|                                                                     | Compound 1                          |  |
|---------------------------------------------------------------------|-------------------------------------|--|
| <b>1</b> after catalytic recyclings                                 |                                     |  |
| (Zn <sup>2+</sup> of filter liquor)                                 | 0.69 ppm                            |  |
| <b>1</b> as $Cr_2O_7^{2-}$ sensor after luminescent                 |                                     |  |
| recyclings (Cr <sup>6+</sup> of soild sample)                       | below detectable limit (0.0069 ppm) |  |
| <b>1</b> as CrO <sub>4</sub> <sup>2-</sup> sensor after luminescent |                                     |  |
| recyclings (Cr <sup>6+</sup> of soild sample)                       | below detectable limit (0.0039 ppm) |  |