Supporting Information for

Pseudo electron-deficient organometallics: limited reactivity towards electron-donating ligands

Anaïs Pitto-Barry, Alexandru Lupan, Markus Zegke, Thomas Swift, Amr A. A. Attia, Rianne M. Lord, and Nicolas P. E. Barry

Contents

1.	Materials and Methods	3
	Materials	3
	Instrumentation	3
	Methods	4
2.	Synthesis and characterisation of complexes 1 – 4	4
	Synthesis of ([(η ⁶ - <i>p</i> -cymene)Ru(benzene-1,2-dithiolato)] (1)	4
	Synthesis of $[(\eta^6-p-cymene)Os(benzene-1,2-dithiolato)]$ (2)	4
	Figure S1. ¹³ C NMR spectra of complexes 1 – 4 (CDCl ₃ , 100 MHz, 298 K).	7
	Figure S2. FTIR spectra of complexes $1 - 4$, recorded as powders (spectra have been shifted along the y axis for clarity).	g 8
	Figure S3. Mass spectra of complexes 1 and 2 in methanol solutions, recorded in ESI+ mode	9
	Figure S4. Solid state structures of 1 and 3 with thermal ellipsoids at 50% probability level. The hydrogen atoms are omitted for clarity.	10
3	Titration of complexes 1 – 4 with pyridine	11

	Figure S5. UV-Vis spectra of the titrations of complexes $1 - 4$ with pyridine in CH ₂ Cl ₂ (10 ⁻⁴ M, K).	298 11
4.	Synthesis and characterization of complexes 5 – 8	12
	Synthesis of [(n ⁶ - <i>p</i> -cymene)Ru(3.6-dichlorobenzene-1.2-dithiolato)] (5)	12
	Synthesis of [(n ⁶ - <i>p</i> -cymene)Os(3,6-dichlorobenzene-1,2-dithiolato)] (6)	12
	Synthesis of $[(n^5-pentamethylcyclopentadiene)Rh(3,6-dichlorobenzene-1,2-dithiolato)]$ (7)	12
	Synthesis of [(n ⁵ -pentamethylcyclopentadiene)Ir(3,6-dichlorobenzene-1,2-dithiolato)] (8)	13
	Figure S6a. ¹³ C NMR spectra of complexes 5 and 6 (CDCl ₃ , 100 MHz, 298 K)	14
	Figure S6b. ¹³ C NMR spectra of complexes 7 and 8 (CDCl ₃ , 100 MHz, 298 K)	15
	Figure S7. Infra-red spectra of complexes $5 - 8$, recorded as powders (spectra have been shifted along the y axis for clarity).	16
	Figure S8a. Mass spectra of complexes 5 and 6 in methanol solutions, recorded in ESI+ mode	17
	Figure S8b. Mass spectra of complexes 7 and 8 in methanol solutions, recorded in ESI+ mode	18
5.	Titration of complexes 5-8	19
	Figure S9. UV-Vis spectra of the titration of complexes $5 - 8$ by DMAP, triphenylphosphine, an pyridine in CH ₂ Cl ₂ (10 ⁻⁴ M, 298 K).	d 19
6.	Crystallographic data	20
	Table S1. X-ray crystallographic data for complexes 1, 3, 6, and 8, with s.u.s shown in parenthes	sis. 20
	Table S2. Selected bond lengths (Å) for complexes 1, 3, 6, and 8	20
	Table S3. Selected bond angles (°) for complexes 1, 3, 6, and 8.	21
	Figure S10. Packing diagram showing the short contacts of complex 1, 3, 6 and 8.	21
7.	Calculations data	22
	Table S4. Distance table for the optimized structure of complex 1 (M11L/def2tzvp)	22
	Table S5. Distance table for the optimized structure of complex 2 (M11L/def2tzvp)	23
	Table S6. Distance table for the optimized structure of complex 3 (M11L/def2tzvp)	24
	Table S7. Distance table for the optimized structure of complex 4 (M11L/def2tzvp)	25
	Table S8. Molecular orbitals involved in the five main calculated singlet electronic transitions of the UV-visible spectrum of complex 1 and their relative weights determined by TD-DFT calculations. The molecular orbitals are shown in Figure 8.	f 25
	Table S9. Molecular orbitals, with ranking order and energy (in a.u.) for compound 1.	26
	Table S10. Thermochemistry of the reactions between complexes $1 - 4$, pyridine, DMAP, and triphenylphosphine, with computed zero point corrected Gibbs free energies of all the species	27
8.	¹ H DOSY NMR	28
	Figure S11. Snapshot of raw ¹ H DOSY data from complex 1 processed using Bruker Topspin software carried out at 298 (A), 278 (B) and 328 (C) K	28
	Figure S12. Isolated ¹ H proton signal from dimer (blue) and monomer (red) signals	29
	Table S11. ¹ H DOSY NMR of complex 1 at different temperatures	29

9.	References	.29
9.	References	.29

1. Materials and Methods

Materials

Metals chloride hydrates were purchased from Precious Metals Online.

All other reagents were obtained from commercial suppliers and used as received. THF was distilled over calcium hydride. Procedures were performed under nitrogen atmosphere and dried glassware, unless otherwise stated.

The $[(\eta^6-p\text{-cymene})\text{MCl}(\mu\text{-Cl})]_2$ (M: Ru and Os) and $[(\eta^5\text{-}C_5(\text{CH}_3)_5)\text{MCl}(\mu\text{-Cl})]_2$, dimers (M: Rh and Ir) were prepared according to literature procedures.¹ $[(\eta^5\text{-}C_5(\text{CH}_3)_5)\text{Rh}(\text{S}_2\text{C}_6\text{H}_4)]$ and $[(\eta^5\text{-}C_5(\text{CH}_3)_5)\text{Ir}(\text{S}_2\text{C}_6\text{H}_4)]$ were prepared according to literature procedures.²

Instrumentation

All NMR spectra were recorded on a 400 MHz Bruker Spectrospin spectrometer using deuterated solvents. Chemical shifts are reported as δ in parts per million using the residual protonated solvent as internal standard.³ The following abbreviations are used to describe signals multiplicities: doublet (d), doublet of doublet (dd), triplet (t), quartet (q), septet (sept), multiplet (m). Diffusion-Ordered Spectroscopy was carried out using a modified Bruker Pulse sequence. Calibration of the gradient field strength was performed using a sample of H_2O in D_2O (1% v/v) doped with GdCl₃ (0.1 mg) as a paramagnetic relaxation agent. Gradient strengths were calibrated to provide a diffusion coefficient of 1.91 x 10⁻⁹ m⁻² s⁻¹ at 298.15 K (gradients operated from 95% to 5% using 16 points with a quadratic decay). A bipolar LED sequence as for the sample measurements was used, with sine shaped gradient pulses and gradient strengths incremented between 0.28 and 5.19 G mm-1 in 16 steps equally spaced in gradient squared. 1H diffusion measurements were recorded using an LED sequence with bipolar gradients, with sine shaped gradient strength incremented between 0.28 and 5.19 G mm⁻¹ with gradient steps equally spaced linearly. Data analyses were performed using TopSpin software version 3.5 (patch level 5). Temperature accuracy for the ¹H DOSY experiments performed was ensured by initial calibration of the sample temperature to displayed sample control temperature by measurement of the shift between the residual CH₃ and OH resonances of methanol (99.8% MeOD). Diffusion distributions were calculated using the Stokes Einstein equation as previously described.⁴

Atmospheric solids analysis probe mass spectroscopy (ASAP-MS) experiments were performed on a Micromass ZMD mass spectrometer. Mass analysis was performed in positive ionisation mode. Settings are the following: source temperature 400 °C, sampling cone 14 V, corona 3.94 kV.

UV-vis spectroscopy was carried out on a Perkin Elmer Lambda 35 UV/vis spectrometer or an Agilent Cary 60 UV-vis spectrophotometer. Quartz cells with two polished sides were used.

Infrared spectra of compounds were obtained using a Perkin Elmer 100 FT-IR instrument fitted with DTGS (deuterated triglycine sulphate) detector.

XRD studies: A suitable single crystal was selected and immersed in an inert oil and mounted on a nylon loop attached to a goniometer head. The crystal data was obtained on a Bruker Apex-II CCD diffractometer using Cu-K_a radiation (l = 1.5418 Å) with 1.0° f-rotation frames. The crystal was cooled to 100 K by an Oxford Cryostream low temperature device,⁵ and the full data set refinement and reduction was carried out using Saint v8.34A program.⁶ Structure solution by direct methods was achieved using Olex2-1.2⁷ through the use of SHELXS,⁸ and the structural model refined by full

matrix least squares on F² using SHELXT and SHELXL.⁹ Molecular graphics were plotted using Mercury program.¹⁰ Unless otherwise stated, hydrogen atoms were placed using idealised geometric positions (with free rotation for methyl groups), allowed to move in a "riding model" along with the atoms to which they were attached, and refined isotropically.

Methods

Geometry optimizations were carried out using the M11-L DFT functional¹¹ coupled with the SDD basis set¹² for the metal ions and the def2-TZVP basis set¹³ for the lighter elements. Vibrational frequencies were calculated to ensure the absence of imaginary frequencies and to obtain the IR spectra. UV-vis spectra were computed using the time dependent density functional theory (TD-DFT) method on the optimized structures using the same DFT functionals and basis sets. All calculations were performed in vacuum.¹⁴ All calculations were performed by utilizing the Gaussian 09 software package.¹⁵

2. Synthesis and characterisation of complexes 1 – 4

Synthesis of ([$(\eta^6$ -*p*-cymene)Ru(benzene-1,2-dithiolato)] (1)

The compound has already been synthesised following a different procedure.¹⁶ A solution of 1,2benzenedithiol (58 μ L, 0.51 mmol, 1 eq.) and sodium methoxide (55 mg, 1.01 mmol, 2 eq.) in dried THF (15 mL) was stirred under nitrogen for one hour, an orange colour appeared after 10 min. The [(η^6 -*p*-cymene)RuCl(μ -Cl)]₂ dimer (200 mg, 0.33 mmol, 0.5 eq.) was then added, the solution became red and was stirred for 15 min. The solvent was removed and the remaining solid was purified by chromatographic column (hexane/CH₂Cl₂ 2:1). A dark yellow powder was obtained (47.3 mg, 20%)

Both the mononuclear and dinuclear complexes exist in solution, as confirmed by ¹H NMR and as previously reported.

¹H NMR (400 MHz, CDCl₃): 8.03 (m, 2H, H_{arom benzene monomer}), 7.59 (d, ${}^{3}J_{\text{H-H}} = 7.6$ Hz, 1H, H_{arom benzene dimer), 7.19 (d, ${}^{3}J_{\text{H-H}} = 7.6$ Hz, 1H, H_{arom benzene dimer), 7.13 (m, 2H, H_{arom benzene}), 6.90 (t, ${}^{3}J_{\text{H-H}} = 7.2$ Hz, 1H, H_{arom benzene dimer), 6.73 (t, ${}^{3}J_{\text{H-H}} = 7.0$ Hz, 1H, H_{arom benzene dimer), 5.70 (dd, ${}^{3}J_{\text{H-H}} = 8.7$, 6.1 Hz, 4H, H_{arom p-cymene monomer}), 4.84 (d, ${}^{3}J_{\text{H-H}} = 6.0$ Hz, 1H, H_{arom p-cymene dimer), 4.45 (d, ${}^{3}J_{\text{H-H}} = 5.8$ Hz, 1H, H_{arom p-cymene dimer}), 4.37 (d, ${}^{3}J_{\text{H-H}} = 6.0$ Hz, 1H, H_{arom p-cymene dimer}), 4.24 (d, ${}^{3}J_{\text{H-H}} = 5.8$ Hz, 1H, H_{arom p-cymene dimer}), 2.88 (sept, ${}^{3}J_{\text{H-H}} = 6.9$ Hz, 1H, CH(CH₃)_{2 dimer}), 2.71 ((sept, ${}^{3}J_{\text{H-H}} = 6.9$ Hz, 1H, CH(CH₃)_{2 monomer}), 2.35 (s, 3H, CH₃C_{arom monomer}), 2.19 (s, 3H, CH₃C_{arom dimer}), 1.34 (d, ${}^{3}J_{\text{H-H}} = 6.9$ Hz, 6H, CH(CH₃)_{2 dimor}), 1.20 (d, ${}^{3}J_{\text{H-H}} = 6.8$ Hz, 3H, CH(CH₃)_{2 dimer}), 1.17 (d, ${}^{3}J_{\text{H-H}} = 6.3$ Hz, 3H, CH(CH₃)_{2 dimer}). ¹³C NMR (100 MHz, CDCl₃): 157.0, 156.1, 148.2, 130.0, 129.3, 128.9, 125.6, 122.4, 120.0, 106.4, 105.0, 100.7, 94.1, 88.7, 88.4, 87.7, 84.7, 80.3, 78.2, 77.4, 32.2, 31.7, 30.2, 24.3, 23.6, 22.8, 21.8, 20.8, 19.0. MS (AP⁺): 376.9 [M+H]⁺. UV-vis (CH₂Cl₂, 1.0 × 10⁻⁴ M): $\lambda_{max} 258$ ($\varepsilon = 1.22 \times 10^4$ M⁻¹/cm), 298 ($\varepsilon = 0.55 \times 10^4$ M⁻¹/cm), 439 ($\varepsilon = 0.65 \times 10^4$ M⁻¹/cm), 571 ($\varepsilon = 0.14 \times 10^4$ M⁻¹/cm).}}}}}}}

Synthesis of $[(\eta^6-p-\text{cymene})Os(\text{benzene-1,2-dithiolato})]$ (2)

The same procedure as for $[(\eta^6-p\text{-cymene})\text{Ru}(\text{benzene-1,2-dithiolato})]$, the ruthenium analogue molecule, was followed using $[(\eta^6-p\text{-cymene})\text{OsCl}(\mu\text{-Cl})]_2$ dimer (200 mg, 0.25 mmol, 0.5 eq.) A dark red powder was obtained (99 mg, 42%).

Only the mononuclear complex exists in solution, as confirmed by ¹H NMR.

¹H NMR (400 MHz, CDCl₃): 8.19 (dd, ${}^{3}J_{\text{H-H}} = 6.0$, 3.3 Hz, 2H, H_{arom benzene}), 7.07 (dd, 2H, H_{arom benzene}), 6.05 (dd, ${}^{3}J_{\text{H-H}} = 16.6$, 5.8 Hz, 4H, H_{arom p-cymene}), 2.64 (sept, ${}^{3}J_{\text{H-H}} = 6.9$ Hz, 1H, *CH*(CH₃)₂), 2.50 (s, 3H, CH₃C_{arom}), 1.35 (d, ${}^{3}J_{\text{H-H}} = 6.8$ Hz, 6H, CH(*CH*₃)₂). ¹³C NMR (100 MHz, CDCl₃): 157.3, 129.2, 123.1, 97.4, 86.8, 73.0, 70.8, 32.7, 23.8, 21.3. MS (AP⁺): 467.0 [M+H]⁺. UV-vis (CH₂Cl₂, 1.0 × 10⁻⁴ M): λ_{max} 255 ($\epsilon = 1.78 \times 10^{4}$ M⁻¹/cm), 297 ($\epsilon = 0.88 \times 10^{4}$ M⁻¹/cm), 374 ($\epsilon = 0.63 \times 10^{4}$ M⁻¹/cm), 487 ($\epsilon = 0.14 \times 10^{4}$ M⁻¹/cm).

Figure S1. ¹³C NMR spectra of complexes 1 - 4 (CDCl₃, 100 MHz, 298 K).

Figure S2. FTIR spectra of complexes 1 - 4, recorded as powders (spectra have been shifted along the y axis for clarity).

Figure S3. Mass spectra of complexes 1 and 2 in methanol solutions, recorded in ESI+ mode.

Figure S4. Solid state structures of **1** and **3** with thermal ellipsoids at 50% probability level. The hydrogen atoms are omitted for clarity.

The molecular structures for complexes **1** and **3** show a half-sandwich *pseudo*-octahedral geometry for the central metal atom. The metal atoms are capped by a *p*-cymene (**1**) or Cp* (**3**) ligand and coordinated by three S atoms, two from the benzene-1,2-dithiolato ligand, and one from an adjacent moiety, thus creating diamond-shaped (MS)₂ motif for these metals. The same dimeric structure of complex **1** has previously been reported;¹⁷ however, the complex reported here crystallized in a monoclinic cell and structural solution was performed in space group $P2_1/n$. The Ru1–S bond lengths in **1** (2.378(1) and 2.377(2) Å) are close to those previously published (2.36 - 2.39 Å). The Rh1-S bond lengths in **3** (2.3589(8) and 2.3589(8) Å) are also close to literature values (2.35 – 2.40 Å).² Selected bond distances (Å) and angles (°): 1: Ru1-Ru1' 3.6219(5) Ru1-Cg 1.709 Ru1-S1 2.3775(13) Ru1-S2 2.3774(14) Ru1-S1' 2.4106(13) S1-Ru1-Cg 131.31 S2-Ru1-Cg 115.03 S1-Ru1-S2 84.54(5) S1-Ru1S1' 81.68(5) 2: Rh1-Rh1' 3.5189(4) Rh1-Cg 1.831 Rh1-S1 2.3589(8) Rh1-S2 2.3523(8) Rh1-S1' Rh1-S2' 2.3981(8) S1-Rh1-Cg 124.63 S2-Rh1-Cg 127.39 S1-Rh1-S2 85.05(3) S1-Rh1-S2' 84.69(3).

3. Titration of complexes 1 – 4 with pyridine

Figure S5. UV-Vis spectra of the titrations of complexes 1 - 4 with pyridine in CH₂Cl₂ (10⁻⁴ M, 298 K).

4. Synthesis and characterization of complexes 5 – 8

Synthesis of $[(\eta^6-p-\text{cymene})\text{Ru}(3,6-\text{dichlorobenzene-1},2-\text{dithiolato})]$ (5)

A solution of 3,6-dichloro-1,2-benzenedithiol (106 mg, 0.51 mmol, 1 eq.) and sodium methoxide (54 mg, 1.01 mmol, 2 eq.) in dried THF (15 mL) was stirred under nitrogen for one hour, an orange colour appeared after 10 min. The [(*p*-cymene Ru)₂(μ -Cl)₂] dimer (153 mg, 0.25 mmol, 0.5 eq.) was then added, the solution became dark red and was stirred for 15 min. The solvent was removed and the remaining solid was purified by chromatographic column (hexane/CH₂Cl₂ 2:1). A red powder was obtained (58 mg, 26%).

Both the mononuclear and dinuclear complexes exist in solution, as confirmed by ¹H NMR.

¹H NMR (400 MHz, CDCl₃): 7.84 (d, ${}^{3}J_{\text{H-H}} = 6.7$ Hz, 1H, H_{arom benzene monomer}), 7.70 (m, 1H, H_{arom benzene dimer}), 7.53 (m, 1H, H_{arom benzene dimer}), 7.27 (m, 1H, H_{arom benzene}), 7.03 (d, ${}^{3}J_{\text{H-H}} = 7.7$ Hz, 1H, H_{arom benzene dimer}), 6.78 (d, ${}^{3}J_{\text{H-H}} = 7.7$ Hz, 1H, H_{arom benzene dimer}), 5.82 (dd, ${}^{3}J_{\text{H-H}} = 9.0$, 6.4 Hz, 4H, H_{arom p-cymene monomer}), 4.79 (d, ${}^{3}J_{\text{H-H}} = 6.1$ Hz, 1H, H_{arom p-cymene dimer}), 4.66 (d, ${}^{3}J_{\text{H-H}} = 5.6$ Hz, 1H, H_{arom p-cymene dimer}), 4.53 (d, ${}^{3}J_{\text{H-H}} = 5.6$ Hz, 1H, H_{arom p-cymene dimer}), 4.11 (d, ${}^{3}J_{\text{H-H}} = 5.6$ Hz, 1H, H_{arom p-cymene dimer}), 2.99 (sept, ${}^{3}J_{\text{H-H}} = 6.6$ Hz, 1H, *CH*(CH₃)_{2 dimer}), 2.62 ((sept, ${}^{3}J_{\text{H-H}} = 6.7$ Hz, 1H, *CH*(CH₃)_{2 monomer}), 2.31 (s, 3H, CH₃C_{arom monomer}), 2.26 (s, 3H, CH₃C_{arom dimer}), 1.26 (d, ${}^{3}J_{\text{H-H}} = 7.3$ Hz, 6H, CH(*CH*₃)_{2 monomer}), 1.18 (d, ${}^{3}J_{\text{H-H}} = 6.6$ Hz, 6H, CH(*CH*₃)_{2 dimer}). ¹³C NMR (100 MHz, CDCl₃): 154.6, 131.8, 123.6, 105.4, 94.4, 81.5, 79.4, 32.1, 29.1, 23.6, 23.2, 21.7, 21.0, 14.2, 11.1. MS (AP⁺): 446 [M+H]⁺. UV-vis (CH₂Cl₂, 1.0 × 10⁻⁴ M): λ_{max} 260 ($\varepsilon = 2.55 \times 10^4$ M⁻¹/cm), 306 ($\varepsilon = 1.36 \times 10^4$ M⁻¹/cm), 426 ($\varepsilon = 0.94 \times 10^4$ M⁻¹/cm), 564 ($\varepsilon = 0.28 \times 10^4$ M⁻¹/cm).

Synthesis of $[(\eta^6-p-\text{cymene})Os(3,6-\text{dichlorobenzene-1},2-\text{dithiolato})]$ (6)

A solution of 3,6-dichloro-1,2-benzenedithiol (105 mg, 0.51 mmol, 1 eq.) and sodium methoxide (54 mg, 1.00 mmol, 2 eq.) in dried THF (15 mL) was stirred under nitrogen for one hour, an orange colour appeared after 10 min. The [(*p*-cymene Os)₂(μ -Cl)₂] dimer (191 mg, 0.25 mmol, 0.5 eq.) was then added, the solution became dark red and was stirred for 15 min. The solvent was removed and the remaining solid was purified by chromatographic column (hexane/CH₂Cl₂ 2:1). A red powder was obtained (120 mg, 45%).

Only the mononuclear complex exists in solution, as confirmed by ¹H NMR.

¹H NMR (400 MHz, CDCl₃): 7.22 (s, 2H, H_{arom benzene}), 6.14 (dd, ${}^{3}J_{\text{H-H}} = 15.7$, 6.1 Hz, 4H, H_{arom p-cymene}), 2.57 (sept, ${}^{3}J_{\text{H-H}} = 6.9$ Hz, 1H, *CH*(CH₃)₂), 2.46 (s, 3H, CH₃C_{arom}), 1.31 (d, ${}^{3}J_{\text{H-H}} = 6.6$ Hz, 6H, CH(*CH*₃)₂). ¹³C NMR (100 MHz, CDCl₃): 157.2, 131.4, 124.2, 97.8, 87.2, 74.4, 72.11, 32.7, 23.9, 21.5. MS (AP⁺): 534.9 [M+H]⁺. UV-vis (CH₂Cl₂, 1.0 × 10⁻⁴ M): λ_{max} 260 ($\varepsilon = 2.04 \times 10^4$ M⁻¹/cm), 304 ($\varepsilon = 2.07 \times 10^4$ M⁻¹/cm), 368 ($\varepsilon = 0.80 \times 10^4$ M⁻¹/cm), 488 ($\varepsilon = 0.22 \times 10^4$ M⁻¹/cm).

Synthesis of $[(\eta^5-pentamethylcyclopentadiene)Rh(3,6-dichlorobenzene-1,2-dithiolato)]$ (7)

A solution of 3,6-dichloro-1,2-benzenedithiol (106 mg, 0.51 mmol, 1 eq.) and sodium methoxide (54 mg, 1.00 mmol, 2 eq.) in dried THF (15 mL) was stirred under nitrogen for one hour, an orange colour appeared after 10 min. The [(pentamethylcyclopentadieneRh)₂(μ -Cl)₂] dimer (162 mg, 0.25 mmol, 0.5 eq.) was then added, the solution became brown and was stirred for 15 min. The solvent was removed and the remaining solid was purified by chromatographic column (hexane/CH₂Cl₂ 3:1). A brown powder was obtained (22 mg, 10%).

Only the mononuclear complex exists in solution, as confirmed by ¹H NMR.

¹H NMR (400 MHz, CDCl₃): 7.24 (s, 2H, H_{arom benzene}), 1.97 (s, 15H, CH₃C_{arom}). ¹³C NMR (100 MHz, CDCl₃): 151.3, 131.6, 123.8, 99.6, 10.9. MS (AP⁺): 446.8 [M+H]⁺. UV-vis (CH₂Cl₂, 1.0 × 10⁻⁴ M): λ_{max} 261 (ϵ = 3.84 × 10⁴ M⁻¹/cm), 298 (ϵ = 0.66 × 10⁴ M⁻¹/cm), 352 (ϵ = 0.09 × 10⁴ M⁻¹/cm), 479 (ϵ = 0.90 × 10⁴ M⁻¹/cm).

Synthesis of $[(\eta^5-pentamethylcyclopentadiene)Ir(3,6-dichlorobenzene-1,2-dithiolato)]$ (8)

A solution of 3,6-dichloro-1,2-benzenedithiol (106 mg, 0.51 mmol, 1 eq.) and sodium methoxide (55 mg, 1.00 mmol, 2 eq.) in dried THF (15 mL) was stirred under nitrogen for one hour, a yellow colour appeared after 10 min. The [(pentamethylcyclopentadieneIr)₂(μ -Cl)₂] dimer (198 mg, 0.25 mmol, 0.5 eq.) was then added, the solution became dark red and was stirred for 15 min. The solvent was removed and the remaining solid was purified by chromatographic column (hexane/CH₂Cl₂ 2:1). A red powder was obtained (240 mg, 89%).

Only the mononuclear complex exists in solution, as confirmed by ¹H NMR.

¹H NMR (400 MHz, CDCl₃): 7.31 (s, 2H, H_{arom benzene}), 2.16 (s, 15H, CH₃C_{arom}). ¹³C NMR (100 MHz, CDCl₃): 153.2, 131.8, 124.0, 93.2, 10.7. MS (AP⁺): 537.1 [M+H]⁺. UV-vis (CH₂Cl₂, 1.0 × 10⁻⁴ M): λ_{max} 260 ($\epsilon = 2.09 \times 10^4$ M⁻¹/cm), 305 ($\epsilon = 0.94 \times 10^4$ M⁻¹/cm), 405 ($\epsilon = 0.90 \times 10^4$ M⁻¹/cm), 536 ($\epsilon = 0.10 \times 10^4$ M⁻¹/cm).

Figure S6a. ¹³C NMR spectra of complexes **5** and **6** (CDCl₃, 100 MHz, 298 K).

Figure S6b. ¹³C NMR spectra of complexes 7 and 8 (CDCl₃, 100 MHz, 298 K).

Figure S7. Infra-red spectra of complexes 5 - 8, recorded as powders (spectra have been shifted along the y axis for clarity).

Figure S8a. Mass spectra of complexes **5** and **6** in methanol solutions, recorded in ESI+ mode.

Figure S8b. Mass spectra of complexes **7** and **8** in methanol solutions, recorded in ESI+ mode.

5. Titration of complexes 5-8

Figure S9. UV-Vis spectra of the titration of complexes 5 - 8 by DMAP, triphenylphosphine, and pyridine in CH₂Cl₂ (10⁻⁴ M, 298 K).

6. Crystallographic data

Complex	1	3	6	8
Formula	$C_{32}H_{36}Ru_2S_4$	$C_{32}H_{38}Rh_2S_4$	$C_{16}H_{16}Cl_2OsS_2$	$C_{16}H_{17}Cl_2IrS_2$
Formula weight	750.99	756.68	533.51	536.51
Crystal system	Monoclinic	Triclinic	Orthorhombic	Orthorhombic
Space group	$P2_1/n$	P-1	Pbca	Pbca
a (Å)	8.3501(3)	8.0369(3)	13.0325(9)	8.4853(7)
b (Å)	11.5760(4)	10.5256(3)	15.8037(10)	13.8473(13)
c (Å)	15.4298(5)	10.8572(4)	16.5142310)	29.535(2)
α (°)	90	61.5440(10)	90	90
β (°)	93.101(2)	69.2960(10)	90	90
γ (°)	90	79.238(2)	90	90
V (Å ³)	1489.27(9)	755.15(5)	3400.9(4)	3470.3(5)
Z	2	1	8	8
Density (Mg m ⁻³)	1.675	1.664	2.084	2.054
Crystal size	0.72×0.15×0.12	0.66×0.36×0.19	0.39×0.34×0.21	$1.07\times0.07\times0.07$
Absorp coeff (mm ⁻¹)	10.983	11.571	19.258	12.949
Radiation type	Cu Kα	Cu Kα	Cu Kα	Cu Kα
T (K)	170.02	170.0	170.0	170.01
Reflections collected	10648	10493	33857	22761
Independent	2520	2562	2874	2942
reflections	2330	2302	28/4	2843
R ₁	0.0702	0.0321	0.0379	0.0542
wR ₂	0.1845	0.0814	0.0986	0.1439
Goodness of Fit	1.053	1.104	1.208	1.070

Table S1. X-ray crystallographic data for complexes 1, 3, 6, and 8, with s.u.s shown in parenthesis.

Table S2. Selected bond lengths (\dot{A}) for complexes 1, 3, 6, and 8.

Complex	1 (M = Ru)	3 (M = Rh)	6 (M = Os)	8 (M = Ir)
M1-M1'	3.6219(5)	3.5189(4)	-	-
M1-S1	2.3775(13)	2.3589(8)	2.2582(14)	2.249(3)
M1-S1'	2.4096(13)	-	-	-
M1-S2	2.3774(14)	2.3523(8)	2.2568(14)	2.246(3)
M1-S2'	-	2.3981(8)	-	-
M1-Cg	1.709	1.831	1.690	1.818

Complex	1 (M = Ru)	3 (M = Rh)	6 (M = Os)	8 (M = ir)
S1-M1-S1'	81.68(5)	-	-	-
S1-M1-S2	84.54(5)	85.05(3)	87.68(5)	88.35(11)
S1-M1-S2'	-	84.69(3)	-	-
S2-M1-S1'	84.31(5)	-	-	-
S2-M1-S2'	-	84.42(3)	-	-
S1-M1- Cg	131.31	124.63	135.89	137.34
S2-M1- Cg	115.03	127.39	136.41	134.31
S1'-M1-Cg	131.31	-	-	-
S2'-M1-Cg	-	134.45	-	-

Table S3. Selected bond angles (°) for complexes 1, 3, 6, and 8.

Compound 1 along the c axis

Compound 6 along the b axis

Compound **3** along the *a* axis

Compound **8** along the c axis

7. Calculations data

Table S4. Distance table for the optimized structure of complex 1 (M11L/def2tzvp).

22		1	2	3	4	5
31 32	1 Ru	0.000000		-		-
33^{30}^{311}	2 S	2.244215	0.000000			
27 2415 1219	3 S	2.242011	3.085469	0.000000		
25 25 1	4 C	3.197893	1.715057	2.691620	0.000000	
28	5 C	5.554672	4.481180	3.974675	2.766195	0.000000
	6 C	3.196166	2.689941	1.715187	1.393200	2.391502
4 3	7 C	4.547374	2.708206	3.982849	1.391349	2.387840
4 5	8 C	5.556072	3.975823	4.481900	2.391860	1.387692
	9 C	4.544514	3.981035	2.706525	2.404851	1.366648
35-7 9-37	Centroi	d 1.680925	3.653704	3.648512	4.852550	7.224816
95	11 C	2.171388	3.544157	4.205671	4.905820	7.408258
	12 C	2.176878	4.228878	3.560932	5.169107	7.288404
39 38	13 C	2.180238	4.104315	3.651142	5.089935	7.259789
S1 (D)	14 C	2.212860	3.358857	4.448687	4.894077	7.527639
SI (Ru)	15 C	2.184884	3.681550	4.122542	4.972716	7.414659
	16 C	2.212243	4.448639	3.347191	5.265755	7.256492
		6	7	8	9	10
	6 C	0.000000				
	7 C	2.405524	0.000000			
	8 C	2.766782	1.366722	0.000000		
	9 C	1.390791	2.763320	2.388125	0.000000	
	Centroi	d 4.849889	6.170565	7.226969	6.166032	0.000000
	11 C	5.136405	6.111460	7.250612	6.476820	1.389900
	12 C	4.934788	6.515464	7.449447	6.143256	1.389397
	13 C	4.931831	6.406524	7.367255	6.157054	1.424253
	14 C	5.271035	6.057398	7.270192	6.654751	1.396391
	15 C	5.124654	6.206333	7.312053	6.445434	1.424048
	16 C	4.883002	6.649713	7.518616	6.042449	1.396383
		11	12	13	14	15
	11 C	0.000000				
	12 C	2.779240	0.000000			
	13 C	1.414398	2.432211	0.000000	0 000000	
	14 C	1.396121	2.411409	2.448483	0.000000	0.000000
	15 C	2.432520	1.414952	2.847/97	1.401519	0.000000
	16 C	2.412132	1.394341	1.402959	2./91862	2.44/948

1 Os 0.000000 2 S 2.259972 0.000000 3 S 2.258426 3.105068 0.000000 4 C 3.210772 1.721182 2.699080 0.000000 5 C 5.567837 4.485702 3.977666 2.764536 0.000000 6 C 3.208909 2.696557 1.721647 1.389654 2.391472 7 C 4.557356 2.707088 3.987784 1.389103 2.386307 8 C 5.569277 3.978494 4.487102 2.391663 1.385723 9 C 4.554500 3.985166 2.705567 2.400251 1.368149 Centroid 1.704820 3.690158 3.687059 4.889173 7.262124 11 C 2.185750 3.584766 4.228318 4.941097 7.438121	33 1,33 1,33 14 15 14 15 15 16 18 12 15 16 18 12 15 16 18 24 15 12 15 18 12 15 18 18 16 18 18 18 18 18 18 18 18 18 18
2 S 2.259972 0.000000 3 S 2.258426 3.105068 0.000000 4 C 3.210772 1.721182 2.699080 0.000000 5 C 5.567837 4.485702 3.977666 2.764536 0.000000 6 C 3.208909 2.696557 1.721647 1.389654 2.391472 7 C 4.557356 2.707088 3.987784 1.389103 2.386307 8 C 5.569277 3.978494 4.487102 2.391663 1.385723 9 C 4.554500 3.985166 2.705567 2.400251 1.368149 Centroid 1.704820 3.690158 3.687059 4.889173 7.262124 11 C 2.185750 3.584766 4.228318 4.941097 7.438121	1,33,11,19,13,16,18 1,31,11,19,13,16,18 24,15,12,19 25,1 29,25,1 29,25,1 29,25,1 20,25
3 S 2.258426 3.105068 0.00000 4 C 3.210772 1.721182 2.699080 0.00000 5 C 5.567837 4.485702 3.977666 2.764536 0.000000 6 C 3.208909 2.696557 1.721647 1.389654 2.391472 7 C 4.557356 2.707088 3.987784 1.389103 2.386307 8 C 5.569277 3.978494 4.487102 2.391663 1.385723 9 C 4.554500 3.985166 2.705567 2.400251 1.368149 Centroid 1.704820 3.690158 3.687059 4.889173 7.262124 11 C 2.185750 3.584766 4.228318 4.941097 7.438121	2415 1219 28 25 1 29 2 3
4 C 3.210772 1.721182 2.699080 0.000000 5 C 5.567837 4.485702 3.977666 2.764536 0.000000 6 C 3.208909 2.696557 1.721647 1.389654 2.391472 7 C 4.557356 2.707088 3.987784 1.389103 2.386307 8 C 5.569277 3.978494 4.487102 2.391663 1.385723 9 C 4.554500 3.985166 2.705567 2.400251 1.368149 Centroid 1.704820 3.690158 3.687059 4.889173 7.262124 11 C 2.185750 3.584766 4.228318 4.941097 7.438121	25 25 1 25 25 1 25 25 25 25 25 25 25 25 25 25 25 25 25
5 C 5.567837 4.485702 3.977666 2.764536 0.000000 6 C 3.208909 2.696557 1.721647 1.389654 2.391472 7 C 4.557356 2.707088 3.987784 1.389103 2.386307 8 C 5.569277 3.978494 4.487102 2.391663 1.385723 9 C 4.554500 3.985166 2.705567 2.400251 1.368149 Centroid 1.704820 3.690158 3.687059 4.889173 7.262124 11 C 2.185750 3.584766 4.228318 4.941097 7.438121	237 23
6 C 3.208909 2.696557 1.721647 1.389654 2.391472 7 C 4.557356 2.707088 3.987784 1.389103 2.386307 8 C 5.569277 3.978494 4.487102 2.391663 1.385723 9 C 4.554500 3.985166 2.705567 2.400251 1.368149 Centroid 1.704820 3.690158 3.687059 4.889173 7.262124 11 C 2.185750 3.584766 4.228318 4.941097 7.438121	2 3
2 3 7 C 4.557356 2.707088 3.987784 1.389103 2.386307 4 6 8 C 5.569277 3.978494 4.487102 2.391663 1.385723 9 C 4.554500 3.985166 2.705567 2.400251 1.368149 Centroid 1.704820 3.690158 3.687059 4.889173 7.262124 11 C 2.185750 3.584766 4.228318 4.941097 7.438121	2 3
8 C 5.569277 3.978494 4.487102 2.391663 1.385723 9 C 4.554500 3.985166 2.705567 2.400251 1.368149 Centroid 1.704820 3.690158 3.687059 4.889173 7.262124 11 C 2.185750 3.584766 4.228318 4.941097 7.438121	
4 6 9 C 4.554500 3.985166 2.705567 2.400251 1.368149 35 7 9 3 C 4.554500 3.985166 2.705567 2.400251 1.368149 Centroid 1.704820 3.690158 3.687059 4.889173 7.262124 11 C 2.185750 3.584766 4.228318 4.941097 7.438121	A
$35 - 7 \qquad \qquad$	U
	25 7 0 37
11 C 2.105750 5.504700 4.220510 4.941077 7.450121	3
8 =5 12 C 2.191125 4.248308 3.602004 5.192826 7.319518	8=5
36 38 13 C 2.194689 4.148010 3.670586 5.127358 7.292632	36 38
14 C 2.243570 3.403885 4.496151 4.941370 7.574422	• •
S2 (Os) 15 C 2.198350 3.694426 4.163863 4.994304 7.443548	S2 (Os)
16 C 2.243986 4.496914 3.397881 5.315330 7.309416	
6 7 8 9 10	
6 C 0.000000	
7 C 2.401175 0.000000	
8 C 2.765476 1.368165 0.000000	
9 C 1.388621 2.759313 2.386738 0.000000	
Centroid 4.886938 6.203871 7.263928 6.200239 0.000000	
11 C 5.163380 6.146403 7.285539 6.499816 1.391526	
12 C 4.967478 6.534128 7.474903 6.175406 1.390959	
13 C 4.961458 6.444533 7.405599 6.182221 1.424934	
14 C 5.316610 6.101035 7.317065 6.697951 1.401208	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
16 C 4.935463 6.696942 7.570565 6.092369 1.401320	
11 C 0.000000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$13 C 1.420300 2.431174 0.000000 \\14 C 1 307872 2 418064 2 455020 0.000000$	
$14 C 1.377072 2.410004 2.433027 0.000000 \\15 C 2 A31508 1 A2060A 2 848018 1 A0202A 0.000000$	
15 C - 2.451508 - 1.420074 - 2.846518 - 1.402054 - 0.000000 - 16 C - 2.418967 - 1.396380 - 1.403332 - 2.800865 - 2.454643	

Table S5. Distance table for the optimized structure of complex 2 (M11L/def2tzvp).

23		1	2	3	4	5
30 24 22	1 Rh	0.000000				
28 25 4 15 110015	2 S	2.237168	0.000000			
	3 S	2.237481	3.091437	0.000000		
34 32 30 37	4 C	3.179899	1.709736	2.690651	0.000000	
33 1 39	5 C	5.538947	4.478627	3.969718	2.768931	0.000000
	6 C	3.179745	2.690937	1.709093	1.396850	2.393124
2 3	7 C	4.530196	2.702518	3.979463	1.391170	2.387474
	8 C	5.539143	3.970863	4.477811	2.393321	1.388105
4 6	9 C	4.529796	3.979913	2.701343	2.406891	1.366098
17-7 9-19	Centroi	d 1.811674	3.762125	3.760780	4.963603	7.339611
	11 C	2.187320	4.390072	3.473062	5.272588	7.335751
8-3	12 C	2.173410	4.211131	3.667573	5.200233	7.372306
19 20	13 C	2.175025	3.649610	4.230719	5.006687	7.508914
	14 C	2.186021	3.482746	4.381807	4.957297	7.551721
S3 (Rh)	15 C	2.167747	3.951978	3.925639	5.099815	7.421498
		6	7	8	9	10
	6 C	0.000000				
	7 C	2.406768	0.000000			
	8 C	2.768753	1.366200	0.000000		
	9 C	1.391066	2.761657	2.387392	0.000000	
	Centroi	d 4.962836	6.280474	7.340257	6.279055	0.000000
	11 C	4.953696	6.648954	7.553559	6.144743	1.213057
	12 C	5.010414	6.541647	7.501842	6.241811	1.206911
	13 C	5.208928	6.234573	7.370988	6.553885	1.207399
	14 C	5.269407	6.150988	7.338871	6.643919	1.212798
	15 C	5.090329	6.389141	7.428196	6.373785	1.203771
		11	12	13	14	15
	11 C	0.000000				
	12 C	1.410833	0.000000			
	13 C	2.303188	1.433777	0.000000		
	14 C	2.310583	2.302190	1.410174	0.000000	
	15 C	1.424604	2.289730	2.290416	1.425763	0.000000

Table S6. Distance table for the optimized structure of complex **3** (M11L/def2tzvp).

2)		1	2	3	4	5
26	1 Ir	0.000000				
22 23 23 15	2 S	2.248783	0.000000			
3114 16 135	3 S	2.249154	3.096187	0.000000		
28 32 33	4 C	3.195226	1.714060	2.692144	0.000000	
29 1 34	5 C	5.553859	4.480732	3.971525	2.766694	0.000000
	6 C	3.194991	2.692512	1.713197	1.392715	2.392132
2 3	7 C	4.542905	2.702761	3.980138	1.389440	2.386528
	8 C	5.554090	3.972920	4.479716	2.392307	1.386820
4 6	9 C	4.542419	3.980712	2.701325	2.402774	1.367012
36-7 9-39	Centroi	d 1.832303	3.794914	3.792808	4.999908	7.375043
	11 C	2.211666	4.426714	3.512769	5.314218	7.378683
	12 C	2.187219	4.234458	3.694961	5.226981	7.398881
37 39	13 C	2.189721	3.675194	4.257969	5.036052	7.536968
$\mathbf{S}\mathbf{A}(\mathbf{I}_{r})$	14 C	2.209663	3.524704	4.416470	5.001928	7.594218
54 (lf)	15 C	2.182974	3.985156	3.953595	5.136516	7.457999
		6	7	8	9	10
	6 C	0.000000				
	7 C	2.402676	0.000000			
	8 C	2.766536	1.367126	0.000000		
	9 C	1.389351	2.759120	2.386429	0.000000	
	Centroi	d 4.998767	6.313985	7.375930	6.312008	0.000000
	11 C	4.997339	6.688518	7.596082	6.185501	1.216227
	12 C	5.038922	6.565283	7.527767	6.267097	1.208838
	13 C	5.237861	6.260396	7.398833	6.580150	1.209535
	14 C	5.310494	6.193314	7.382776	6.682706	1.215813
	15 C	5.125371	6.424551	7.465767	6.406653	1.204088
		11	12	13	14	15
	11 C	0.000000				
	12 C	1.412908	0.000000	0.00000		
	13 C	2.308612	1.438123	0.000000		
	14 C	2.316496	2.307154	1.411931	0.000000	0.000000
	15 C	1.426689	2.291397	2.292358	1.428220	0.000000

Table S7. Distance table for the optimized structure of complex 4 (M11L/def2tzvp).

Table S8. Molecular orbitals involved in the five main calculated singlet electronic transitions of the UV-visible spectrum of complex 1 and their relative weights determined by TD-DFT calculations. The molecular orbitals are shown in Figure 8.

Relative weights
0.49307
0.41551
0.48475
0.52760
0.51067

92 -0.00044	85 -0.05405	78 -0.21750
91 -0.02027	84 -0.05485	77 -0.21750
90 -0.02725	83 -0.06794	76 -0.24320
89 -0.02935	82 LUMO -0.10876	75 -0.26989
88 -0.04528	81 HOMO -0.18211	74 -0.27103
87 -0.04809	80 HOMO-1 -0.19444	73 -0.27518
86 -0.04809	79 -0.19757	72 -0.30119

Table S9. Molecular orbitals, with ranking order and energy (in a.u.) for compound 1.

Table S10. Thermochemistry of the reactions between complexes 1 - 4, pyridine, DMAP, and triphenylphosphine, with computed zero point corrected Gibbs free energies of all the species.

	E + thermal corr.	ZPE	E + thermal corr. + ZPE	Binding Energy (kcal/mol)	Binding Energy (with ZPE) (kcal/mol)
DMAP	-303.614389	0.104855	-303.509534		
PPh ₃	-1036.180024	0.269664	-1035.910360		
Pyridine	-248.257266	0.087290	-248.169976		
1	-1511.943676	0.293928	-1511.649748		
2	-1507.729921	0.293636	-1507.436285		
3	-1528.232712	0.302289	-1527.930423		
4	-1522.019875	0.302137	-1521.717738		
1 + DMAP	-1815.543915	0.400665	-1815.143250	8.9	10.1
1 + PPh ₃	-2548.114716	0.565175	-2547.549541	5.6	6.6
1 + Pyridine	-1760.183901	0.383337	-1759.800564	10.7	12.0
2 + DMAP	-1811.327836	0.400587	-1810.927249	10.3	11.7
2 + PPh ₃	-2543.896037	0.566304	-2543.329733	8.7	10.6
2 + Pyridine	-1755.968288	0.383172	-1755.585116	11.9	13.3
3 + DMAP	-1831.830169	0.408798	-1831.421371	10.6	11.7
3 + PPh ₃	-2564.407653	0.574194	-2563.833459	3.2	4.6
3 + Pyridine	-1776.471371	0.391595	-1776.079776	11.7	12.9
4 + DMAP	-1825.614306	0.409080	-1825.205226	12.5	13.8
4 + PPh₃	-2558.193066	0.574630	-2557.618436	4.3	6.1
4 + Pyridine	-1770.254293	0.391674	-1769.862619	14.3	15.7

8. ¹H DOSY NMR

Diffusion ordered spectroscopy experiments were carried out on complex 1 in $CDCl_3(10 \text{ mM})$. This was done to establish the difference between single and monomeric and dimeric metal species in the same sample. Samples were run at varying temperatures as shown in Fig. S11.

Figure S11. Snapshot of raw ¹H DOSY data from complex **1** processed using Bruker Topspin software carried out at 298 (A), 278 (B) and 328 (C) K.

From the room temperature data (298 K) a horizontal slice of the ¹H proton peak from both the monomer ($D = 1.52 \times 10^{-9} \text{ m}^2 \text{ S}^{-1}$) and dimer ($D = 1.75 \times 10^{-9} \text{ m}^2 \text{ S}^{-1}$) was taken so that the monomer and dimer proton signals could be isolated. This is shown in Fig S.12.

Figure S12. Isolated ¹H proton signal from dimer (blue) and monomer (red) signals

The signals at 5.7 and 4.8 ppm were then extracted to determine the exact diffusion of the samples at different temperatures, and the ratio of the two proton sources compared to give the ratio of monomer (M): Dimer (D) present at that temperature. This data is shown in Table S11 with raw data show nin Fig. S14. This data indicates that as the temperature was increased the concentration of dimer was reduced significantly, so that at 318 K there was insufficient concentration of dimer to determine an accurate diffusion value and the accuracy of the fits was greatly reduced. Within the sample the diffusion of the solvent peaks (CDCl₃) decreased as the temperature was raised however this is likely due to the changing concentration of monomer / dimer complexes present within the sample affecting solvent viscosity.

Tabl	e S11. ¹ H	DOSY NMR	of complex	1 at different	temperatures.

Temperature / K	$CDCl_3 D / x10^9$	M Diffusion	D Diffusion	Ratio of peaks
-	M ² S ⁻¹	/ x10 ⁹ M ² S ⁻¹	/ x10 ⁹ M ² S ⁻¹	$({}^{1}\mathrm{H}M/{}^{1}\mathrm{H}D)$
278 K	4.57 ± 0.10	4.52 ± 0.10	4.60 ± 0.10	1.32
298 K	3.63 ± 0.10	1.52 ± 0.10	1.75 ± 0.10	2.70
328 K	3.89 ± 0.10	0.02 ± 0.10	- (too small)*	30.48

9. References

1. Tönnemann, J.; Risse, J.; Grote, Z.; Scopelliti, R.; Severin, K., Efficient and Rapid Synthesis of Chlorido-Bridged Half-Sandwich Complexes of Ruthenium, Rhodium, and Iridium by Microwave Heating. *Eur. J. Inorg. Chem.* **2013**, *2013* (26), 4558-4562.

2. Xi, R.; Abe, M.; Suzuki, T.; Nishioka, T.; Isobe, K., Synthesis and characterization of pentamethylcyclopentadienylrhodium(III) and -iridium(III) complexes with 1,2-benzenedithiolate - $[(Cp*Rh)2(\mu(S)-1,2-C6H4S2-S,S')2], [(Cp*Rh)2(\mu(S)-1,2-C6H4S2-S,S')(\mu(S)-1,2-C6H4S(SO2)-S,S')]$ and [(Cp*Ir)(1,2-C6H4S2-S,S')] (Cp* = η 5-C5(CH3)5) Professor Peter M. Maitlis on the occasion of his 65th birthday and in recognition of his pioneer contributions to this field. *J. Organomet. Chem.* **1997**, *549* (1–2), 117-125.

3. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR Chemical Shifts of Trace Impurities: Common Laboratory

Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **2010**, *29* (9), 2176-2179.

4. Swift, T.; Hoskins, R.; Telford, R.; Plenderleith, R.; Pownall, D.; Rimmer, S., Analysis using size exclusion chromatography of poly(N-isopropyl acrylamide) using methanol as an eluent. *J. Chromatogr. A* **2017**, *1508*, 16-23.

5. Cosier, J.; Glazer, A. M., A nitrogen-gas-stream cryostat for general X-ray diffraction studies. *J. Appl. Crystallogr.* **1986**, *19* (2), 105-107.

6. Bruker-AXS, APEX2. Version 2014.11-0. *Madison* **2014**, *Wisconsin*, USA.

7. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42* (2), 339-341.

8. Sheldrick, G. M., XS. Version 2013/1. *Georg-August-Universität Göttingen* **2013**, *Göttingen*, Germany.

9. Sheldrick, G., SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallographica Section A* **2015**, *71* (1), 3-8.

10. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A., Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. *J. Appl. Crystallogr.* **2008**, *41* (2), 466-470.

11. Peverati, R.; Truhlar, D. G., M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. *The Journal of Physical Chemistry Letters* **2012**, *3* (1), 117-124.

12. Nicklass, A.; Dolg, M.; Stoll, H.; Preuss, H., Ab initio energy-adjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities. *J. Chem. Phys.* **1995**, *102* (22), 8942-8952.

13. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7* (18), 3297-3305.

 Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J. Comput. Chem.* 2003, *24* (6), 669-681.
M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox *Gaussian 09, Revision E.01*, Gaussian, Inc.: Wallingford CT, 2016.

16. Mashima, K.; Kaneyoshi, H.; Kaneko, S.-i.; Mikami, A.; Tani, K.; Nakamura, A., Chemistry of Coordinatively Unsaturated Bis(thiolato)ruthenium(II) Complexes (η 6-arene)Ru(SAr)2 [SAr = 2,6-Dimethylbenzenethiolate, 2,4,6-Triisopropylbenzenethiolate; (SAr)2 = 1,2-Benzenedithiolate; Arene = Benzene, p-Cymene, Hexamethylbenzene]. *Organometallics* **1997**, *16* (5), 1016-1025.

17. Cabeza, J. A.; Garcia-Granda, S.; Perez-Priede, M.; Van der Maelen, J. F., Bis([mu]-[eta]2-benzene-1,2-dithiolato-[kappa]3S,S':S')bis[([eta]6-p-cymene)ruthenium(II)]. *Acta Crystallographica Section E* **2002**, *58* (5), m189-m190.