-Supporting Information for the manuscript entitled-

"Synthesis and Characterisation of Benzotriazole or Benzoxazole Phenoxide Ligands Supported Nb and Ta Metal Complexes and their Application for the Synthesis of Hyperbranched Polyglycerols by Ring-Opening Polymerisation of Glycidol"

Sreenath Pappuru, Debashis Chakraborty* and Venkatachalam Ramkumar

dchakraborty@iitm.ac.in

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India

Fig. S2 ¹³C NMR (100 MHz, CDCl₃) of compound 1a.

Fig. S3 ESI-Mass Spectrum of compound 1a.

Fig. S4 1 H NMR (400 MHz, CDCl₃) of compound 2a.

Fig. S5 ¹³C NMR (100 MHz, CDCl₃) of compound 2a.

Fig. S6 ESI-Mass Spectrum of compound 2a.

Fig. S8 ¹³C NMR (100 MHz, CDCl₃) of compound 3a.

Fig. S10 1 H NMR (400 MHz, CDCl₃) of compound 4a.

Fig. S12 ESI-Mass Spectrum of compound 4a.

Fig. S14 ¹³C NMR (100 MHz, CDCl₃) of compound 5a.

Fig. S16 ^1H NMR (400 MHz, CDCl_3) of compound 6a.

Fig. S17¹³C NMR (100 MHz, CDCl₃) of compound 6a.

Fig. S18 ESI-Mass Spectrum of compound 6a.

Fig. S20 13 C NMR (100 MHz, CDCl₃) of compound 7a.

Fig. S22 ¹H NMR (400 MHz, CDCl₃) of compound 8a.

Fig. S23 ¹³C NMR (100 MHz, CDCl₃) of compound 8a.

Fig. S24 ESI-Mass Spectrum of compound 8a.

Fig. S26¹³C NMR (100 MHz, CDCl₃) of compound 9a.

Fig. S27 ESI-Mass Spectrum of compound 9a.

Fig. S28 1 H NMR (400 MHz, CDCl₃) of compound 1b.

Fig. S30 ESI-Mass Spectrum of compound 1b.

Fig. S32 ¹³C NMR (100 MHz, CDCl₃) of compound 2b.

Fig. S34 1 H NMR (400 MHz, CDCl₃) of compound 3b.

Fig. S35 ¹³C NMR (100 MHz, CDCl₃) of compound **3b**.

Fig. S36 ESI-Mass Spectrum of compound 3b.

Fig. S38 ¹³C NMR (100 MHz, CDCl₃) of compound 4b.

Fig. S40 ¹H NMR (400 MHz, CDCl₃) of compound 5b.

Fig. S42 ESI-Mass Spectrum of compound 5b.

Fig. S43 1 H NMR (400 MHz, CDCl₃) of compound 6b.

Fig. S44 13 C NMR (100 MHz, CDCl₃) of compound **6b**.

Fig. S45 ESI-Mass Spectrum of compound 6b.

Fig. S46 ¹H DOSY NMR (500 MHz, CDCl₃) spectrum of 8a.

Fig. S47 ¹H DOSY NMR (500 MHz, CDCl₃) spectrum of 9a.

General procedure for the calculation of hydrodynamic radius ($R_{\rm H}$)

The hydrodynamic radius of **8a** and **9a** was calculated from the average diameter (d_{av}) of d_v (vertical), d_h (horizontal) and d_d (diagonal), obtained from the single crystal XRD structure (taking the measurement between the furthest atoms in each case).¹ The R_H value was then correlated with the value obtained from ¹H DOSY NMR spectrum.

$$R_{\rm H} = d_{\rm av}/2$$
, where $d_{\rm av} = (d_{\rm v} + d_{\rm h} + d_{\rm d})/3$

Although we reported $R_{\rm H}$ calculated by the above procedure, there is another approach to the calculation. The minimum radius $R_{\rm min}$ can be calculated from the molecular volume determined from www.molinspiration.com by the formula $V_{\rm mol} = (4\pi/3)R_{\rm min}^3$. The maximum distance between the furthest atoms (d max) was obtained from single crystal XRD structure and the maximum radius was determined from d max. The hydrodynamic radius was then calculated from the average of $R_{\rm max}$ and $R_{\rm min}^2$. Both the approaches led to almost similar results.

References

1) S. Neogi, Y. Lorenz, M. Engeser, D. Samanta and M. Schmittel, *Inorg. Chem.* 2013, **52**, 6975–6984.

L. Azor, C. Bailly, L. Brelot, M. Henry, P. Mobian and S. Dagorne, *Inorg. Chem.*, 2012, 51, 10876-10883.

Fig S48. Expanded view of the unit cell of 7a, the dimer representation with red and blue colours.

Fig S49. Expanded view of the unit cell of 7a, showing the same orientation of alternative chains with red and blue colours.

Fig. S50. ¹H NMR spectra (400 MHz, CDCl₃) of only 1,1,1-Tris(hydroxymethyl)propane (TMP) initiator and TMP reacted complex **5a** in 1:1 molar ratio (a, b) and oligomer species prepared using TMP reacted complex **5a** (1equiv) and glycidol (5 equiv) in dry toluene at 95 $^{\circ}$ C, 2 h (c).

Fig. S51. GPC trace of polyglycerol using complex 5a.

Fig. S52. GPC trace of polyglycerol using complex 6a.

Fig. S53 ¹H NMR spectrum (400 MHz, CDCl3) of the polyglycerol obtained using complex **6a** in 100:1:1 molar ratio initiated with 1,1,1-tris(hydroxymethyl)propane (TMP).

Fig. S54 IG (Inverse Gated) ¹³C NMR of hyperbranched polyglycerol synthesized using complex **6a** [L_{13} : Linear 1,3; L_{14} : Linear 1,4; D: Dendritic; T: Terminal].

Fig. S55 ¹H NMR spectrum (400 MHz, CDCl3) of the polyglycerol obtained using complex **5b** in 100:1:1 molar ratio initiated with 1,1,1-tris(hydroxymethyl)propane (TMP).

Fig. S56 IG (Inverse Gated) ¹³C NMR of hyperbranched polyglycerol obtained using complex **5b** in 100:1:1 molar ratio [L_{13} : Linear 1,3; L_{14} : Linear 1,4; D: Dendritic; T: Terminal].

Entry	Sample	L _{1,3}	L _{1,4}	D	Т	DB
1	HPG polymer using 5a	0.13	0.30	0.24	0.33	0.53
2	HPG polymer using 6a	0.15	0.32	0.24	0.29	0.50
3	HPG polymer using 5b	0.20	0.37	0.23	0.20	0.45
4	HPG polymer using 6b	0.16	0.37	0.24	0.23	0.48
5	HPG polymer using 2b	0.20	0.35	0.19	0.26	0.41
6	HPG polymer using 2a	0.20	0.38	0.22	0.20	0.43
	1			1	1	

Table S1: Relative integrals of the different repeating units determined by inverse gated (IG) ¹³C NMR spectroscopy and used for the calculation of the degree of branching.

Fig. S57 Proposed mechanism for the initiation, propagation and cyclization reactions for the ROP of glycidol.

Fig. S58 DSC trace (heating rate: 10 °C/min, 2nd scan) of polyglycerol at 100:1:1 molar ratio (see Table 3, entry 17).

Fig. S59 DSC trace (heating rate: $10 \, ^{\circ}C/min$, 2^{nd} scan) of hyperbranched polyglycerol at 100:1:1 molar ratio (see Table 3, entry 18).