Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supplementary information for the manuscript

"Volatile heterometallics: structural diversity of palladium-lead β-diketonates and correlation with thermal properties" by V.V. Krisyuk, I.A. Baidina, N.A. Kryuchkova, V.A. Logvinenko, P.E. Plyusnin, I.V. Korolkov, G.I. Zharkova, A.E. Turgambaeva, I.K. Igumenov

Content

Table S1. Crystallographic Data and XRD Experiment Details.

Quantum chemistry computations

Fig. S1. Charge distribution on molecules of metal β -diketonates forming a heterocomplex *1* Fig. S2. Spatial structure of some MOs with a contribution of AOs of the metals following the results of DFT calculations.

Table S2. Contribution of AOs into the frontier orbitals and some MOs

Kinetic analysis under non-isothermal conditions

Fig. S3. Sublimation and decomposition of **3**. TG curves at heating rates of 5 (1), 10 (2) \times 20 (3) K min⁻¹.

Fig. S4. Sublimation and decomposition of *3*. The analysis of process by Friedman's method: dependence of the computed value of activation energy on the degree of conversion.

Fig. S5. Sublimation and decomposition of *3*. Comparison of experimental data (points) and calculated data (lines). Calculation was made following the equation $f_1(\alpha) = (1-\alpha)^{0.69}$ for the first stage of thermolysis (70% of mass loss).

Fig. S6. Sublimation and decomposition of 3. Comparison of experimental data (points) and calculated data (lines) for the second or third decomposition stages (70.0 - 99.9 % of mass loss). Calculation was performed for two-stage process both following the equation of Avrami-Yerofeyev (An, An).

Fig. S7. Sublimation and decomposition of 5. TG curves at heating rates of 5 (1), 10 (2) \times 20 (3) K min⁻¹.

Fig. S8. Sublimation and decomposition of *3*. The analysis of process by Friedman's method: dependence of the computed value of activation energy on the degree of conversion.

Fig. S9. Sublimation and decomposition of **5**. Comparison of experimental data (points) and calculated data (lines) for heating rates of 5 (1), 10 (2) \times 20 (3) K min⁻¹. Calculation was performed for two-stage process both following the order equation.

Far-IR spectroscopy

Fig. S10. Experimental infrared spectra for **1**, Pd(acac)₂ and Pb(hfac)₂. **Fig. S11.** Experimental infrared spectra for **2**, Pd(hfac)₂ and Pb(hfac)₂.

Annex I: Summary of NBO for 1

Compound	$[3Pd(acac)_2*2[Pb(hfac)_2](1)$	$[Pd(hfac)_2*2[Pb(hfac)_2](2)$
Stoichiometric formula	C12.50 H11.50 F6 O5 Pb0.50 Pd0.75	C20 H4 F24 O8 PbPd
Molecular weight	539.11	1141.82
Temperature	150(2) K	296(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	triclinic	triclinic
Space group	P-1	<i>P</i> -1
Unit cell parameters	$a = 9.8703(6) \text{ Å}$ $\alpha = 74.659(2)^{\circ}$	$a = 9.4437(16) \text{ Å} \alpha = 91.519(5)^{\circ}$
-	b= 13.2237(9) Å β = 72.712(2)°	$b = 11.538(2) \text{ Å}$ $\beta = 91.672(5)^{\circ}$
	$c = 14.5931(9) \text{ Å}$ $\gamma = 69.401(2)^{\circ}$	$c = 14.995(3)$ Å $\gamma = 97.940(5)^{\circ}$
Volume	$1674.89(18) \text{ Å}^3$	$1616.7(5) \text{ Å}^3$
Z	4	2
Density (calculated)	2.138 g/cm^3	2.346 g/cm^3
Absorption coefficient	5.933 mm^{-1}	5.937 mm^{-1}
F(000)	1024	1064
Crystal size	$0.40 \ge 0.15 \ge 0.11 \text{ mm}^3$	0.17 x 0.07 x 0.03 mm ³
θ record area	2.03 - 31.56°	2.18 - 30.62°.
h, k, l range	-14<=h<=14, -19<=k<=19, -	-13<=h<=12, -16<=k<=16, -
	21<=l<=18	21<=l<=21
Number of measured/independent	20943/10837 [R(int) = 0.0436]	29916/9628 [R(int)= 0.0814]
reflections	, -	
Completeness of data collection on $\theta =$	98.3 %	97.7 %
25.00°		
Max and min transmission	0.5614 and 0.2000	0.8420 and 0.4318
Refinement method	full matrix LSM against F ²	full matrix LSM against F ²
Number of	10837 / 0 / 481	9628 / 0 / 484
reflections/limits/parameters		
S factor against F^2	0.993	0.871
R factor $[I > 2\sigma(I)]$	R1 = 0.0412, $wR2 = 0.0722$	R1 = 0.0575, $wR2 = 0.1241$
R factor (all data)	R1 = 0.0610, wR2 = 0.0770	R1 = 0.1667, wR2 = 0.1508
Max and min residual electron density	1.730 and -1.108 $e/Å^3$	1.454 and -1.074 $e/Å^3$

 Table S1. Crystallographic Data and XRD Experiment Details.

Quantum chemistry computations

Quantum chemistry calculations of the electronic structure of pentanuclear complex 1 were carried out Jaguar 7.5 program, Schrödinger Inc. [1]. For geometry optimization the method of DFT with hybrid exchange and correlation functional of B3LYP [2,3] was chosen. Basis sets *lacvp* and *lacv3p* [4] that include effective core potentials for atoms Pd and Pb respectively were used. Basis sets 6-31G [5] – for other atoms which constitute the complex 1. Computed structural data agree well with those ones from XRD. The deviation of average distances Pd-O and Pb-O from experimental ones does not exceed 0.05 - 0.015 Å. Effective charges on atoms were defined from the molecular electrostatic potential (ESP) [6,7]. The investigation of molecular orbitals was performed by NBO analysis [8]. Summary of NBO analysis for 1 is presented in the Annex I.

- 1. Jaguar 7.5, Schrödinger Inc. Portland OR. 2011.
- 2. Becke A. J. Chem. Phys. 98 (1993) 5648.
- 3. Lee C., Yang W., Parr R.G. Phys. Rev. B. 37 (1988) 785.
- 4. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 82 (1985) 299.
- 5. Hehre, W. J.; Pople, J. A. J. Chem. Phys. 56 (1972) 4233.
- 6. Chirlian L.E., Francl M.M. J. Comput. Chem. 8 (1987) 894.
- 7. Hehre W.J., Ditchfield R., Steward R.F., Pople J.A. J. Chem. Phys. 52 (1970) 2769.
- 8. Reed A.E., Curtiss L.A., Weinhold F. Chem. Rev. 88 (1988) 899.

Fig. S1. Charge distribution on molecules of metal β -diketonates forming a heterocomplex 1

Fig. S2. Spatial structure of some MOs with a contribution of AOs of the metals following the results of DFT of calculations: a) HOMO, isoline 0.05; b) LUMO, isoline 0.05; c) HOMO-10, isoline 0.012; d) HOMO-7, isoline 0.02; e)HOMO-5, isoline 0.01; f) HOMO-3, isoline 0.015.

MO	Energy, eV	Contr	ibution of	f the mai	n atomic		
			orbitals, %				
		Pd4d	Pb6s	O2p	C2p		
LUMO (393)	-2.897344	0	0	17	30		
HOMO (392)	-6.475776	23		25	18		
HOMO-3	-6.893296	2	40	14	18		
(389)							
HOMO-5	-7.018416	15	15	16	22		
(387)							
HOMO-7	-7.154144	18	13	18	16		
(385)							
HOMO-10	-7.280624	37	19	11	3		
(382)							
HOMO-13	-7.61328	2	64	12	5		
(379)							
HOMO-14	-7.638576	6	65	10	4		
(378)							
HOMO-15	-7.682368	71	0	7	6		
(377)							
HOMO-16	-7.70984	71	0	7	6		
(376)							

Table S2. Contribution of AOs into the frontier orbitals and some MOs

Kinetic analysis under non-isothermal conditions

Thermogravimetric data were processed with the computer program Netzsch Thermokinetics 2 (Version 2004.05) [1–2]. A special program module, "Model-free", based on well-known studies [3–13], allows one to process multiple thermogravimetric curves obtained with different heating rates and calculate the activation energy without preliminary information about the kinetic topochemical equation. The Friedman method was used to calculate the activation energies for each experimental point of fractional conversion (in the range $0.005 < \alpha < 0.995$).

We further used the same set of experimental data to search for the corresponding topochemical equation (the selection was made from 16 equations: chemical reaction at the interface, nucleation and diffusion). This calculation was made by the improved differential procedure of Borchardt–Daniels [1, 13] within the multiple linear regression approach. It is very important that the range for the degree of conversion (α) for this calculation is chosen based on the relative constancy of the calculated kinetic parameters from the Friedman analysis.

The F test [1] was used to search for the best kinetic description and for statistical control of the obtained equation. It tests the residual variance of individual models against one another and answers the question of whether the models differ significantly (statistically) or not.

The random error in the activation energy values for such a reversible decomposition reaction is usually about 10 % in these experiments, which we took into consideration. The computer program Netzsch Thermokinetics 2 enables estimation of the contribution of each stage (as Δm portion) after this nonlinear regression calculation.

Well-known recommendations for performing kinetic computations on thermal analysis data [14–16] were used; new studies on non-isothermal kinetics were taken into account [17–23].

The kinetic equations to calculate the kinetic parameters are topochemical ones and the calculated parameters (E and A) are formal and conventional from the standpoint of the classical chemistry of solids.

However, the general trend in the variation of these values within a specially selected series of compounds (either isostructural or genetically related) is very important because the expected disorder in the reaction zones can be identical for them; all other errors will be minimized and smoothed in such a comparison.

References

- 1. Netzsch Thermokinetics. In: Netzsch Thermokinetics. http://www.netzsch-thermalanalysis.com/us/products-%20%20solutions/advanced-software/thermokinetics.html
- 2. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J. Therm. Anal. Calorim. 2012;109:1203–14.
- 3. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957; 29:1702–6.
- 4. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J. Polym. Sci. 1963;6:183–95.
- 5. Ozawa T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Japan. 1965;38:1881–6.
- 6. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim. Acta. 1992;203:159–65.
- 7. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J. Res. Nat. Bur. Stand. 1966;70:478–523.

- 8. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa-Flynn-Wall analysis. Thermochim. Acta. 1992;203:167–75.
- 9. Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo-analytical data advantages and limitations. Thermochim. Acta. 2002;391:119–27.
- 10. Vyazovkin S. Model–free kinetics: staying free of multiplying entities without necessity. J. Therm. Anal. Calorim. 2006;83:45–51.
- 11. Simon P. Single–step kinetics approximation employing nonarrhenius temperature functions. J. Therm. Anal. Calorim. 2005;79:703–8.
- 12. Simon P. The single-step approximation: attributes, strong and weak sides. J. Therm. Anal. Calorim. 2007;88:709–15.
- 13. Borchard HJ, Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J. Amer. Chem. Soc. 1957;79:41–46. Vyazovkin S, Burnham AK, Criado JM, Luis A, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta. 2011;520:1–19.
- 14. Vyazovkin S, Chrissafis K, Di Lorenzo M.–R, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol J–J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta. 2014; 590:1–23.
- Vyazovkin S. Isoconversional kinetics of thermally stimulated processes, Springer, 2015 Simon P, Thomas P, Dubaj T, Cibulkova Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J. Therm. Anal. Calorim. 2014;115:853–9.
- Simon P, Dubaj T, Cibulkova Z. Equivalence of the Arrhenius and non–Arrhenian temperature functions in the temperature range of measurement. J. Therm. Anal. Calorim. 2015;120:231–238. Sestak J. Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J. Therm. Anal. Calorim. 2014;117:3–7.
- 16. Galwey AK. What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition by thermal analysis? J. Therm. Anal. Calorim. 2006;86:267–86.
- Roura P, Farjas J. Analytical solution for the Kissinger equation. J. Mater. Res. 2009;24:3095– 98.
- 18. Holba P, Šesták J. Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Physics Chem (translation from Russian journal). 2014;40:486–491.
- 19. Dubaj T, Cibulková Z, Šimon P. An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression. J. Comput. Chem. 2015;36:392–98.

Sublimation and decomposition of 3

From TG of curves it is visible that process can be divided into three stages: 150-230 °C (sublimation), 230-260 °C and 260-280 °C (heating rate 5 °/min).

Fig. S3. Sublimation and decomposition of **3**. TG curves at heating rates of 5 (1), 10 (2) \times 20 (3) K min⁻¹.

Fig. S4. Sublimation and decomposition of *3*. The analysis of process by Friedman's method: dependence of the computed value of activation energy on the degree of conversion.

As the curve in Fig. S4 is not monotonous, and activation energy changes, the process can be considered as multistage one, namely, three-stage one.

First stage (sublimation), 0.0–70.0 % of mass loss

TG curves obtained at the three heating rates were used for data processing. The order equations, the equations for surface reaction, the diffusion equations, Arrhenius's equation and the equations of reactions with autocatalysis (Fn, F1, D3, An, C1B, B1) were implemented. Linear regression and nonlinear regression methods were used for the calculations. When comparing the used equations according to F-test and value of the correlation coefficient the best fit gives the order equation (Fig. S5):

A \rightarrow B. Fn, $f_1(\alpha) = (1-\alpha)^{0.69}$, $E_1 = 105 \pm 1$ kJ/mol, $\lg A_1 = 9.2 \pm 0.1$ Correlation coefficient 0.998891. The equation $f_1(\alpha) = (1-\alpha)^{0.69}$ matches the chemical reaction on the surface of a spherical grain ($f(\alpha) = (1-\alpha)^{0.666}$). Apparently, the equation describes the sublimation process.

Fig. S5. Sublimation and decomposition of *3*. Comparison of experimental data (points) and calculated data (lines). Calculation was made following the equation $f_1(\alpha) = (1-\alpha)^{0.69}$ for the first stage of thermolysis (70 % of mass loss).

The second and the third stages (decomposition), 70.0 – 99.9 % of mass loss The best description is two consecutive reactions (A \rightarrow B \rightarrow C), Avrami-Erofeyev's equations: A \rightarrow B. An, f₂(α) = (1- α) / [-ln(1- α)]^{1.7}, E₂ = 105 ± 7 kJ/mol, lg A₂ = 9.7 ± 0.8 B \rightarrow C. An, f₃(α) = (1- α) · [-ln(1- α)]^{0.7}, E₃ = 78.9 ± 0.5 kJ/mol, lg A₃ = 5.2 ± 0.1 Correlation coefficient 0.998891.

Fig. S6. Sublimation and decomposition of *3*. Comparison of experimental data (points) and calculated data (lines) for the second or third decomposition stages (70.0 – 99.9 % of mass loss). Calculation was performed for two-stage process both following the equation of Avrami-Yerofeyev (An, An).

Sublimation and decomposition of 5

Fig. S7. Sublimation and decomposition of **5**. TG curves at heating rates of 5 (1), 10 (2) \times 20 (3) K min⁻¹.

Fig. S8. Sublimation and decomposition of *3*. The analysis of process by Friedman's method: dependence of the computed value of activation energy on the degree of conversion.

As the curve in Fig. S8 is not monotonous, and activation energy changes, the process can be considered as multistage one, namely, two-stage one.

TG curves obtained at the three heating rates were used for data processing. The order equations, the equations for surface reaction, the diffusion equations, Arrhenius's equation and the equations of reactions with autocatalysis (Fn, F1, D3, An, C1B, B1) were implemented. Linear regression and nonlinear regression methods were used for the calculations. When comparing the used equations according to F-test and value of the correlation coefficient the best fit gives the order equation (Fig. S9):

A \rightarrow B. Fn, f₂(α) = (1- α), E₁ = 92 ± 1 kJ/mol, lg A₁ = 8.1 ± 0.1. B \rightarrow C. Fn, f₃(α) = (1- α)⁰, E₂ = 138 ± 10 kJ/mol, lg A₂ = 10.1 ± 0.2.

Correlation coefficient 0.998270.

 $A \rightarrow B$, 97.2% of mass loss,

 $B \rightarrow C$, 2.8% of mass loss.

The first order equation $f_1(\alpha) = (1-\alpha)$ corresponds to nucleation process. Apparently, the equation describes the sublimation process.

The zero order equation $f_1(\alpha) = (1-\alpha)^0$ (constant decomposition rate) corresponds to advance of the reaction zone trough the pressed tablet (decomposition of the cake).

Fig. S9. Sublimation and decomposition of **5**. Comparison of experimental data (points) and calculated data (lines) for heating rates of 5 (1), 10 (2) и 20 (3) K min⁻¹. Calculation was performed for two-stage process both following the order equation.

Far-IR spectroscopy

Infrared spectra of the compounds in polyethylene and KBr pellets were recorded using a Vertex 80 FTIR spectrometer.

Fig. S10. Experimental infrared spectra for 1, Pd(acac)₂ and Pb(hfac)₂

Fig. S11. Experimental infrared spectra for 2, Pd(hfa)₂ and Pb(hfac)₂

Annex I Summary of NBO for 1

Jaguar NBO 5.0 NATURAL ATOMIC ORBITAL AND NATURAL BOND ORBITAL ANALYSIS

. . . Summary of Natural Population Analysis:

Natural	Donulation	

			Natural P	opulation	
Atom No	Natural Charge	Core	Valence	Rydberg	Total
Pb 1	1.50574	78.00000	2.46772	0.02654	80.49426
Pd 2	0.91058	35.99418	9.05932	0.03593	45.08942
Pd 3	0.90943	35.99451	9.06709	0.02897	45.09057
O 4	-0.66082	1.99976	6.65451	0.00655	8.66082
O 5	-0.63754	1.99975	6.63117	0.00662	8.63754
C 6	0.50328	1.99889	3.47458	0.02325	5.49672
C 7	-0.46992	1.99881	4.46052	0.01059	6.46992
Н 8	0.25835	0.00000	0.74070	0.00095	0.74165
C 9	0.49341	1.99891	3.48283	0.02485	5.50659
	-0./5/04	1.99918	4.75208	0.00578	0.75704
н 12 н 12	0.28203	0.00000	0.71407	0.00209	0.71737
H 13	0.27788	0.00000	0.71959	0.00253	0.72212
C 14	-0.75634	1.99918	4.75154	0.00561	6.75634
н 15	0.26526	0.00000	0.73377	0.00097	0.73474
Н 16	0.26063	0.00000	0.73825	0.00111	0.73937
Н 17	0.27815	0.00000	0.71921	0.00265	0.72185
0 18	-0.65724	1.99976	6.65102	0.00646	8.65724
0 19	-0.61622	1.99975	6.60925	0.00722	8.61622
0 20	-0.67594	1.99976	6.66975	0.00642	8.67594
0 21	-0.01335	1 0000/	0.00045	0.00715	8.01335 5 /0022
C 22	-0 47351	1 99882	4 46435	0.02348	6 47351
H 24	0.25556	0.00000	0.74359	0.00085	0.74444
C 25	0.48893	1.99889	3.48810	0.02407	5.51107
C 26	-0.75015	1.99919	4.74488	0.00607	6.75015
Н 27	0.27419	0.00000	0.72424	0.00157	0.72581
Н 28	0.24883	0.00000	0.75023	0.00094	0.75117
Н 29	0.27722	0.00000	0.72072	0.00206	0.72278
C 30	-0.75225	1.99919	4.74738	0.00568	6.75225
H 31	0.2/651	0.00000	0.72115	0.00234	0.72349
н 32	0.24818	0.00000	0.75092	0.00089	0.72709
C 34	0.49749	1,99890	3.48095	0.02267	5.50251
C 35	-0.48105	1.99883	4.47209	0.01013	6.48105
Н 36	0.25653	0.00000	0.74260	0.00087	0.74347
C 37	0.48999	1.99895	3.48543	0.02563	5.51001
C 38	-0.75799	1.99918	4.75308	0.00572	6.75799
Н 39	0.28507	0.00000	0.71212	0.00281	0.71493
H 40	0.24970	0.00000	0.74942	0.00089	0.75030
H 41	0.27849	0.00000	0.71902	0.00249	0.72151
U 42	-0.75259	1.99920	4.74843	0.00496	0.75259
н 44	0.25718	0.00000	0.74188	0.00094	0.74282
н 45	0.26562	0.00000	0.73334	0.00103	0.73438
0 46	-0.69692	1.99976	6.68969	0.00746	8.69692
O 47	-0.67373	1.99977	6.66752	0.00644	8.67373
O 48	-0.67490	1.99977	6.66859	0.00654	8.67490
0 49	-0.69865	1.99976	6.69138	0.00751	8.69865
C 50	0.37395	1.99879	3.60393	0.02332	5.62605
C 51	-0.45465	1.99888	4.44193	0.01383	6.45465
H 52	0.28555	1 00000	0./1223	0.00222	U./1445 5 62045
C 54	1 01931	1 99908	2 93165	0.02437	4 98069
C 55	1.01812	1.99908	2.93275	0.05005	4.98188
C 56	0.37752	1.99881	3.59957	0.02409	5.62248
C 57	-0.45484	1.99888	4.44220	0.01376	6.45484
Н 58	0.28611	0.00000	0.71166	0.00223	0.71389
C 59	0.37752	1.99880	3.60054	0.02315	5.62248
C 60	1.01834	1.99908	2.93254	0.05004	4.98166
C 61	1.01962	1.99909	2.93134	0.04996	4.98038
F 62 F 62	-0.33025	1 00003	1.33439 7 21=11	0.00155	9.33625
г 03 F 64	-0.34088 -0.34808	1 99993	7 34541 7 34607	0.00125	2.24000 9 34808
F 65	-0.34590	1.99993	7.34409	0.00189	9.34590
- 66 F 66	-0.34123	1.99993	7.33939	0.00191	9.34123
F 67	-0.34661	1.99993	7.34510	0.00157	9.34661

F 68	-0.34671	1.99993	7.34491	0.00187	9.34671	
F 69	-0.34157	1.99993	7.33974	0.00191	9.34157	
F 70	-0.34580	1.99993	7.34431	0.00157	9.34580	
F 71	-0.33869	1.99993	7.33683	0.00193	9.33869	
F 72	-0.34812	1.99993	7.34662	0.00157	9.34812	
F 73	-0.34451	1.99993	7.34268	0.00191	9.34451	
Pb 74	1.50802	78.00000	2.46543	0.02656	80.49198	
Pd 75	0.90788	35.99464	9.06792	0.02956	45.09212	
0 76	-0.65926	1.99976	6.65297	0.00654	8.65926	
0 77	-0.63909	1.99975	6.63272	0.00662	8.63909	
C 78	0.50455	1.99889	3.47311	0.02345	5.49545	
C 79	-0.46912	1.99880	4.45965	0.01066	6.46912	
н 80	0.25897	0.00000	0.74003	0.00100	0.74103	
C 81	0.49135	1.99891	3.48464	0.02510	5.50865	
C 82	-0.75650	1.99918	4.75152	0.00579	6.75650	
н 83	0.28137	0.00000	0.71594	0.00269	0.71863	
н 84	0.25515	0.00000	0.74394	0.00090	0.74485	
Н 85	0.27750	0.00000	0.72005	0.00245	0.72250	
C 86	-0.75538	1.99918	4.75058	0.00562	6.75538	
Н 87	0.26472	0.00000	0.73430	0.00097	0.73528	
H 88	0.26064	0.00000	0.73824	0.00113	0.73936	
Н 89	0.27809	0.00000	0.71928	0.00262	0.72191	
O 90	-0.65648	1.99976	6.65027	0.00646	8.65648	
O 91	-0.61521	1.99974	6.60820	0.00726	8.61521	
O 92	-0.67439	1.99976	6.66823	0.00641	8.67439	
O 93	-0.61178	1.99975	6.60482	0.00721	8.61178	
C 94	0.50017	1.99894	3.47526	0.02562	5.49983	
C 95	-0.47367	1.99882	4.46449	0.01037	6.47367	
Н 96	0.25522	0.00000	0.74392	0.00086	0.74478	
C 97	0.48810	1.99889	3.48876	0.02424	5.51190	
C 98	-0.75006	1.99919	4.74480	0.00607	6.75006	
н 99	0.27463	0.00000	0.72379	0.00157	0.72537	
H100	0.24821	0.00000	0.75083	0.00096	0.75179	
H101	0.27673	0.00000	0.72123	0.00203	0.72327	
C102	-0.75236	1.99919	4.74756	0.00561	6.75236	
H103	0.27676	0.00000	0.72092	0.00232	0.72324	
H104	0.24810	0.00000	0.75101	0.00089	0.75190	
H105	0.27258	0.00000	0.72605	0.00137	0.72742	
C106	0.49624	1.99889	3.48207	0.02280	5.50376	
C107	-0.48111	1.99883	4.47215	0.01014	6.48111	
H108	0.25624	0.00000	0.74289	0.00087	0.74376	
C109	0.49057	1.99895	3.48476	0.02572	5.50943	
C110	-0.75801	1.99919	4.75310	0.00572	6.75801	
H111	0.28429	0.00000	0.71290	0.00281	0.71571	
H112	0.24989	0.00000	0.74922	0.00088	0.75011	
H113	0.27804	0.00000	0.71949	0.00248	0.72196	
C114	-0.75261	1.99920	4.74848	0.00493	6.75261	
Н115	0.27259	0.00000	0.72565	0.00176	0.72741	
H116	0.25721	0.00000	0.74184	0.00094	0.74279	
H117	0.26547	0.00000	0.73350	0.00102	0.73453	
0118	-0.69695	1.99976	6.68977	0.00742	8.69695	
0119	-0.67400	1.99977	6.66783	0.00641	8.67400	
0120	-0.67446	1.99977	6.66813	0.00657	8.67446	
0121	-0.70133	1.99976	6.69401	0.00756	8.70133	
C122	0.37365	1.99879	3.60421	0.02335	5.62635	
C123	-0.45429	1.99888	4.44155	0.01386	6.45429	
H124	0.28566	0.00000	0.71212	0.00222	0.71434	
C125	0.37995	1.99882	3.59688	0.02435	5.62005	
C126	1.01940	1.99908	2.93153	0.04999	4.98060	
C127	1.01804	1.99908	2.93285	0.05002	4.98196	
C128	0.37847	1.99882	3.59859	0.02412	5.62153	
C129	-0.45443	1.99888	4.44179	0.01376	6.45443	
H130	0.28633	0.00000	0.71144	0.00223	0.71367	
C131	0.37759	1.99879	3.60048	0.02313	5.62241	
C132	1.01835	1.99909	2.93253	0.05003	4.98165	
C133	1.01973	1.99909	2.93122	0.04996	4.98027	
F134	-0.33635	1.99993	7.33450	0.00193	9.33635	
F135	-0.34712	1.99993	7.34564	0.00155	9.34712	
F136	-0.34788	1.99993	7.34607	0.00188	9.34788	
F137	-0.34593	1.99993	7.34411	0.00188	9.34593	
F138	-0.34138	1.99993	7.33954	0.00191	9.34138	
F139	-0.34631	1.99993	7.34481	0.00157	9.34631	
F140	-0.34168	1.99993	7.33985	0.00191	9.34168	
F141	-0.34654	1.99993	7.34473	0.00188	9.34654	
F142	-0.34591	1.99993	7.34441	0.00157	9.34591	
F143	-0.33900	1.99993	7.33714	0.00193	9.33900	
F144	-0.34796	1.99993	7.34646	0.00157	9.34796	
F145	-0.34418	1.99993	7.34234	0.00191	9.34418	
=======	===========				=======	
* Total	* 0.00000	451.92556	570.60527	1.46917	* * * * * * * * *	

Natural Population

Effective Core	240.00000
Core	211.92556 (99.9649% of 212)
Valence	570.60527 (99.7562% of 572)
Natural Minimal Basis	1022.53083 (99.8565% of1024)
Natural Rydberg Basis	1.46917 (0.1435% of1024)

Atom No Natural Electron Configuration

Pb	1	[core]6s(1.95)6p(0.52)7p(0.03)
Pd	2	[core]5s(0.35)4d(8.71)5p(0.02)5d(0.01)6p(0.01)
Pd	3	[core]5s(0.36)4d(8.71)5d(0.01)6p(0.02)

SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS

Threshold for printing: 0.50 kcal/mol (Intermolecular threshold: 0.05 kcal/mol)

				E(2)	E(j)-E(i)	F(i,j)
	Donor NBO (i)		Acceptor NBO (j)	kcal/mol	a.u.	a.u.
====:				========	========	
with:	in unit 1					
263.	LP (1)Pb 1	393.	LP*(2)Pb 1	0.74	0.48	0.018
from	unit 1 to unit 2					
263.	LP (1)Pb 1	873.	BD*(1)Pd 2-04	0.19	0.39	0.008
263.	LP (1)PD 1 $ID (1)DD 1$	874.	$BD^{*}(1)Pd 2 = 0.5$	0.18	0.39	0.008
263	IP (1)PD I IP (1)Pb 1	878	$BD^{*}(1) O = C O$ BD*(2) O 4- C 6	0.35	0.80	0.015
200.		0/01		0.11	0.00	0.007
from	unit 1 to unit 3					
263.	LP (1)Pb 1	875.	BD*(1)Pd 3- 018	0.09	0.39	0.006
263.	LP (1)Pb 1	876.	BD*(1)Pd 3- 019	0.14	0.39	0.007
263.	LP (1)Pb 1	892.	$BD^{*}(1) 018 - C25$	0.35	0.80	0.015
203.		093.	BD" (2) 018- C25	0.13	0.30	0.007
from u	unit 2 to unit 1					
1.	BD (1)Pd 2- 0 4	393.	LP*(2)Pb 1	2.54	0.56	0.035
1.	BD (1)Pd 2- 0 4	394.	LP*(3)Pb 1	0.44	0.52	0.014
1.	BD (1)Pd 2-04	395.	LP*(4)Pb 1	0.79	0.57	0.019
1.	BD (1) Pd 2-04	399.	RY*(1)Pb1	0.47	1.03	0.020
1.	BD (1) Pd 2-04 BD (1) Pd 2-04	400.	RI''(2)PD I RY*(3)Ph 1	0.30	0.99	0.010
2.	BD (1)Pd 2-05	393.	LP*(2)Pb 1	0.21	0.56	0.010
2.	BD (1)Pd 2-05	395.	LP*(4)Pb 1	0.07	0.58	0.006
2.	BD (1)Pd 2- 0 5	399.	RY*(1)Pb 1	0.08	1.03	0.008
5.	BD (1) O 4- C 6	393.	LP*(2)Pb 1	0.55	1.06	0.023
5.	BD (1) 0 4- C 6	394.	LP*(3)Pb 1	0.58	1.02	0.023
5.	BD(1) O 4 - C 6	395.	$LP^{*}(4)PD I$	0.75	1 52	0.026
5. 5	BD(1) 0 4 - C 6 BD(1) 0 4 - C 6	399. 400	$RI^{(1)}$ (1) PD 1 RY*(2) Pb 1	0.08	1 49	0.009
5.	BD (1) 0 4- C 6	401.	RY*(3)Pb 1	0.12	1.40	0.012
б.	BD (2) 0 4-C 6	393.	LP*(2)Pb 1	0.46	0.45	0.013
б.	BD (2) O 4- C 6	395.	LP*(4)Pb 1	1.15	0.46	0.021
9.	BD (1) C 6- C 7	393.	LP*(2)Pb 1	0.09	0.80	0.008
9.	BD (1) C 6- C 7	394.	LP*(3)Pb 1	0.18	0.75	0.011
9. 10	BD(1)C6-C7	395.	$LP^{(4)}PD \perp$ $LP^{(2)}Db \perp$	0.42	0.81	0.01/
10.	BD(1) C 0 - C10 BD(1) C 6 - C10	395.	LP*(4)Pb 1	0.06	0.72	0.000
14.	BD (1) C10- H11	395.	LP*(4)Pb 1	0.33	0.58	0.013
16.	BD (1) C10- H13	394.	LP*(3)Pb 1	0.13	0.52	0.008
16.	BD (1) C10- H13	395.	LP*(4)Pb 1	0.09	0.58	0.007
157.	CR (1)Pd 2	393.	LP*(2)Pb 1	1.35	3.43	0.064
157.	CR (1)Pd 2	394. 205	LP*(3)Pb 1 Lp*(4)pb 1	0.30	3.39	0.030
157.	CR (1)Pd 2 CR (1)Pd 2	399. 399	$P_{\rm LP}^{\rm P}(4)PD = 1$	0.18	3.44	0.023
157.	CR (1)Pd 2	401.	RY*(3)Pb 1	0.08	3.77	0.015
158.	CR (2)Pd 2	393.	LP*(2)Pb 1	0.14	2.15	0.016
160.	CR (4)Pd 2	393.	LP*(2)Pb 1	0.21	2.18	0.020
160.	CR (4)Pd 2	394.	LP*(3)Pb 1	0.07	2.13	0.011
165.	CR (1) 0 4	393.	LP*(2)Pb1	0.39	19.02	0.080
165. 165	$CR(1) \cup 4$ $CP(1) \cap A$	394. 205	LP''(3)PD 1 $LD*(4)DD 1$	0.44	10.90 10 02	0.085
165.	CR(1) 0 4	399	RY*(1)Pb 1	0.05	19.49	0.028
165.	CR (1) 0 4	400.	RY*(2)Pb 1	0.11	19.45	0.040
165.	CR (1) 0 4	401.	RY*(3)Pb 1	0.07	19.36	0.032
167.	CR (1) C 6	395.	LP*(4)Pb 1	0.16	10.24	0.038

266. LP	(3)Pd 2	393. LP*(2)Pb 1	0.32	0.35	0.010
266. LP	(3)Pd 2	399. RY*(1)Pb 1	0.15	0.82	0.010
267. LP	(4)Pd 2	393. LP*(2)Pb 1	0.07	0.36	0.005
272. LP 272 I.D	(1) 0 4	393. LP"(394 I.D*(2)PD 1 3)Ph 1	2.79	0.69	0.040
272. LP	(1) 0 4	395. LP*(4)Pb 1	6.50	0.70	0.062
272. LP	(1)04	399. RY*(1)Pb 1	0.16	1.16	0.012
272. LP	(1)04	400. RY*(2)Pb 1	0.35	1.12	0.018
272. LP	(1)04	401. RY*(3)Pb 1	0.33	1.03	0.017
from unit	3 to unit 1					
3. BD	(1)Pd 3- 018	393. LP*(2)Pb 1	3.50	0.56	0.041
3. BD	(1)Pd 3- 018	394. LP*(3)Pb 1	0.85	0.52	0.019
3. BD	(1)Pd 3- 018 (1)Pd 3- 018	395. LP*(4)Pb 1	0.09	0.57	0.007
3. BD 3. BD	(1)Pd 3-018 (1)Pd 3-018	399. RI*(401 RV*(1)PD 1 3)Ph 1	0.89	1.03	0.027
4. BD	(1)Pd 3-019	393. LP*(2)Pb 1	0.31	0.55	0.012
4. BD	(1)Pd 3- 019	394. LP*(3)Pb 1	0.09	0.51	0.006
4. BD	(1)Pd 3- 019	399. RY*(1)Pb 1	0.15	1.02	0.011
20. BD	(1) 018- C25	393. LP*(2)Pb 1	0.96	1.06	0.030
20. BD	(1) 018 - C25	394. LP*(3)Pb 1	0.60	1.02	0.023
20. BD 20. BD	(1) 018 - C25	401 RY*(1)PD 1 3)Ph 1	0.14	1.54 1 40	0.013
20. BD 21. BD	(2) 018- C25	393. LP*(2)Pb 1	0.85	0.45	0.018
21. BD	(2) 018- C25	395. LP*(4)Pb 1	0.20	0.46	0.009
31. BD	(1) C23- C25	393. LP*(2)Pb 1	0.31	0.80	0.015
31. BD	(1) C23- C25	394. LP*(3)Pb 1	0.20	0.76	0.011
31. BD	(1) C23- C25	395. LP*(4)Pb 1	0.07	0.81	0.007
31. BD	(1) C23 = C25 (1) C26 = H29	399. RI*(394 T.D*(1)PD 1 3)Ph 1	0.05	1.27	0.007
35. BD 35. BD	(1) C26- H29	395. LP*(4)Pb 1	0.00	0.59	0.005
161. CR	(1)Pd 3	393. LP*(2)Pb 1	2.00	3.43	0.077
161. CR	(1)Pd 3	394. LP*(3)Pb 1	0.53	3.39	0.039
161. CR	(1)Pd 3	395. LP*(4)Pb 1	0.27	3.44	0.028
161. CR 162. CP	(1)PQ 3 (2)Pd 3	399. RI*(393 T.D*(1)PD 1 2)Pb 1	0.37	3.90	0.034
162. CR	(2)Pd 3	399. RY*(1)Pb 1	0.05	2.62	0.010
163. CR	(3)Pd 3	393. LP*(2)Pb 1	0.22	2.17	0.021
163. CR	(3)Pd 3	394. LP*(3)Pb 1	0.09	2.13	0.013
164. CR	(4)Pd 3	393. LP*(2)Pb 1	0.06	2.17	0.011
164. CR 172 CP	(4)PC 3 (1)018	395. LP*(393 ID*(4)PD 1 2)Ph 1	0.07	19 02	0.011
172. CR	(1) 018	394. LP*(3)Pb 1	0.52	18.97	0.093
172. CR	(1) 018	395. LP*(4)Pb 1	0.07	19.03	0.035
172. CR	(1) 018	399. RY*(1)Pb 1	0.15	19.49	0.049
172. CR	(1) 018	401. RY*(3)Pb 1	0.07	19.35	0.032
178. CR	(1) C25	393. LP*(2)Pb 1	0.09	10.23	0.029
178. CR 270 I.D	(1) C25 (3) Pd 3	394. LP*(393. T.D*(3)PD 1 2)Ph 1	0.05	10.18	0.022
270. LP	(3)Pd 3	395. LP*(4)Pb 1	0.05	0.36	0.001
270. LP	(3)Pd 3	399. RY*(1)Pb 1	0.19	0.82	0.011
271. LP	(4)Pd 3	393. LP*(2)Pb 1	0.09	0.36	0.005
275. LP	(1) 018	393. LP*(2)Pb 1	6.40	0.68	0.061
275. LP 275. T.D	(1) 018	394. LP^(395. T.D*(3)PD 1 4)Ph 1	6.41 0.81	0.64	0.059
275. LP	(1) 018	399. RY*(1)Pb 1	0.55	1.16	0.022
275. LP	(1) 018	401. RY*(3)Pb 1	0.37	1.02	0.018
from uni+	3 to unit 2					
3. BD	(1)Pd 3-018	873. BD*(1)Pd 2- 0 4	0.05	0.47	0.005
21. BD	(2) 018- C25	404. RY*(1)Pd 2	0.07	0.70	0.006
21. BD	(2) 018- C25	873. BD*(1)Pd 2- 0 4	0.12	0.35	0.006
21. BD 28 DD	(2) 018 - C25	874. BD*(409 pv*(1)Pd 2-05	0.11	0.35	0.006
31. BD	(1) C22 C25	404. RY*(1)Pd 2	0.05	1.05	0.007
31. BD	(1) C23- C25	409. RY*(6)Pd 2	0.07	1.57	0.009
270. LP	(3)Pd 3	873. BD*(1)Pd 2- 0 4	0.07	0.25	0.004
270. LP	(3)Pd 3	874. BD*(1)Pd 2- 0 5	0.08	0.25	0.004
from unit	4 to unit 1					
24. BD	(1) O20- C34	393. LP*(2)Pb 1	0.64	1.07	0.025
24. BD	(1) 020- C34	394. LP*(3)Pb 1	0.70	1.03	0.025
24. BD קם 24	(1) 020 - C34	395. LP*(399 dv*/	4/PD 1 1) Ph 1	1.00 0 11	1.09	0.030
24. RD	(1) 020 - C34	400. RY*/	2)Pb 1	0.11	1.50	0.012
24. BD	(1) 020- C34	401. RY*(3)Pb 1	0.07	1.41	0.009
25. BD	(2) 020- C34	393. LP*(2)Pb 1	0.33	0.45	0.011
25. BD	(2) O20- C34	394. LP*(3)Pb 1	0.08	0.41	0.005
25. BD	(2) 020 - C34	395. LP*(4)Pb 1	0.94	0.46	0.019
57. BD	(I) U34- U35	зяз. ⊔₽^(Z/FN I	0.08	0.80	0.008

39.	BD (1)	C34- C35	394.	LP*(3)Pb	1	0.21	0.76	0.012
39.	BD (1)	C34- C35	395.	LP*(4)Pb	1	0.46	0.81	0.018
40.	BD (1)	C34- C38	393.	LP*(2)Pb	1	0.07	0.71	0.007
40.	BD (1)	C34- C38	395.	LP*(4)Pb	1	0.05	0.73	0.006
44.	BD (1)	С38- Н39	395.	LP*(4)Pb	1	0.26	0.58	0.011
46.	BD (1)	C38- H41	394.	LP*(3)Pb	1	0.12	0.52	0.007
46.	BD (1)	C38- H41	395.	LP*(4)Pb	1	0.08	0.58	0.006
174.	CR (1)	020	393.	LP*(2)Pb	1	0.40	19.02	0.082
174.	CR (1)	020	394.	LP*(3)Pb	1	0.55	18.98	0.095
174.	CR (1)	020	395.	LP*(4)Pb	1	0.96	19.03	0.125
174.	CR (1)	020	399.	RY*(1)Pb	1	0.08	19.49	0.036
174.	CR (1)	020	400.	RY*(2)Pb	1	0.12	19.45	0.044
181.	CR (1)	C34	394.	LP*(3)Pb	1	0.06	10.19	0.023
181.	CR (1)	C34	395.	LP*(4)Pb	1	0.17	10.24	0.039
277.	LP (1)	020	393.	LP*(2)Pb	1	2.73	0.69	0.040
277.	LP (1)	020	394.	LP*(3)Pb	1	6.27	0.65	0.058
277.	LP (1)	020	395.	LP*(4)Pb	1	8.82	0.70	0.072
277.	LP (1)	020	399.	RY*(1)Pb	1	0.26	1.16	0.016
277.	LP (1)	020	400.	RY*(2)Pb	1	0.35	1.12	0.018
277.	LP (1)	020	401.	RY*(3)Pb	1	0.17	1.03	0.012
277.	LP (1)	020	403.	RY*(5)Pb	1	0.05	10.40	0.021
278.	LP (2)	020	393.	LP*(2)Pb	1	2.18	0.48	0.030
278.	LP (2)	020	394.	LP*(3)Pb	1	0.50	0.44	0.014
278.	LP (2)	020	395.	LP*(4)Pb	1	0.61	0.49	0.016
278.	LP (2)	020	399.	RY*(1)Pb	1	0.24	0.95	0.015
278.	LP (2)	020	400.	RY*(2)Pb	1	0.20	0.91	0.013
278.	LP (2)	020	401.	RY*(3)Pb	1	0.08	0.82	0.008

NATURAL BOND ORBITAL ANALYSIS, alpha spin orbitals: (Occupancy) Bond orbital/ Coefficients/ Hybrids

. . .

1. (1.93588	3) BD (1)P	d 2-04							
	(14.37%)	0.3791*Pd	2 s	s(47	7.45%)p	0.01(0.45%)d	1.10(52.10%)
	(85.63%)	0.9254* 0	4 s	s(12	2.37%)p	7.08(87.63%)		
3. (1.93608	3) BD (1)P	d 3-018							
	(14.55%)	0.3815*Pd	3 ธ	s(47	7.61%)p	0.01(0.49%)d	1.09(51.90%)
	(85.45%)	0.9244* 0	18 s	s(12	2.73%)p	6.85(87.27%)		
6. (1.97885	5) BD (2)	0 4-C 6							
	(79.38%)	0.8910* 0	4 \$	s(().11%)p	99.99(99.89%)		
	(20.62%)	0.4541* C	6 8	5(().01%)p	99.99(99.99%)		
··· 157 (1 99720)	CR (1)Pd	2		= (100) 00%)n	0 00(0 00%)4	0 00(0 00%)
		2		3(100		0.00(0.008/4	0.00(0.008/
161. (1.99751)	CR (1)Pd	3	5	s(100	q(%00.	0.00(0.00%)d	0.00(0.00%)
263. (1.97806)	LP (1)Pb	1	£	s(98	3.53%)p	0.01(1.47%)		,
•••									
272. (1.93790)	LP (1) O	4	5	s(48	8.99%)p	1.04(51.01%)		
275. (1.94032)	LP (1) O	18	5	s(48	8.44%)p	1.06(51.56%)		
277. (1.93418)	LP (1) O	20	ŝ	s(48	8.42%)p	1.07(51.58%)		
278. (1.70999)	LP (2) O	20	5	s(10).66%)p	8.38(89.34%)		
393. (0.18092)	LP*(2)Pb	1	5	s(1	53%)p	64.39(98.47%)		
394. (0.16275)	LP*(3)Pb	1	5	s(().00%)p	1.00()	100.00%)		
395. (0.14827)	LP*(4)Pb	1	5	s(().00%)p	1.00()	100.00%)		
	DD#(1)DJ	2 0 1							
873. (0.33540)	BD*(I)Pa	2-04	<u> </u>		4 - 0	0 01/		1 10/	F0 108)
	(85.63%)	0.9254^Pa	28	5(4)	(.45%)p	U.UI(0.45%)a	1.10(52.10%)
074 (0 22406)	(14.3/8)	-0.3/91^ 0	4 \$	5(12	2.3/%)p	/.08(8/.63%)		
8/4. (0.33486)	() BD*(I)PO	2-U 5	2	~ / / -	0 6 %) ~	0 01/	0 45%) 4	1 1 2 /	E0 E0%)
	(05.50%)	0.9250"Pu		5 (4) - / 1 ^	1033/p	0.01(0.45%)0	1.12(52.50%)
975 (0 22270)	(14.44%) המון (1)אמפ	$-0.3799^{\circ}0$	5 5	5 (I 2	2.40%/p	/.0/(07.00%)		
075. (0.55270)	(85 45%)	0 9244*pd	2	- (4	1 612)n	0 01/	0 49817	1 09/	51 902)
	(14 55%)	-0.3815* 0	18 6		732)n	6 85(87 272)	1.05(51.90%)
876 (0 32379)	(14.55%) BD*(1)pd	3-019	10 6	5(I2		0.05(07.27%)		
070. (0.32373)	(84 54%)	0 9195*Pd	3	= (4 F	5 52%)n	0 01(0 58%)d	1 14(52 90%)
	(15 46%)	-0 3931* 0	19 6	s(10	59%)n	7 63(88 41%)	T • T I (52.908)
877. (0.02730)	BD*(1) O	4-C 6	17.	J(11		/.05(00.110,		
0,,,, (0,02,00,	(33.09%)	0.5753* 0	4 s	5(38	a.54%)p	1.59(61,46%)		
	(66.91%)	-0.8180* C	6 5	5(25	α(%e8.	2.86(74.11%)		
878. (0.47261)	BD*(2) O	4-C 6		- (,		
	(20.62%)	0.4541* O	4 s	з(((%11).	99.99(99.89%)		
	(79.38%)	-0.8910* C	б я	s(().01%)p	99.99(99.99%)		
892. (0.02833)	BD*(1) O	18- C 25				·	,		
	(33.14%)	0.5757* 0	18 s	з(38	8.83%)p	1.58(61.17%)		
	(66.86%)	-0.8177* C	25 s	s(25	5.84%)p	2.87(74.16%)		
896. (0.03219)	BD*(1) O	20- C 34			-				
	(67.11%)	-0.8192* C	34 s	s(25	5.74%)p	2.88(74.26%)		
	(32.89%)	0.5735* O	20 s	(40.	87%)p	1.45(59.13%)		

