Electronic Supplementary Information (ESI)

Synthesis, structure, and photophysical properties of copper(I) triphenylphosphine complexes with functionalized 3-(2'-pyrimidinyl)-1,2,4-triazole ligands

Jing-Lin Chen,^{*abe} Xue-Hua Zeng,^a Yan-Sheng Luo,^a Wan-Man Wang,^a Li-Hua He,^a Sui-Jun Liu,^a He-Rui Wen,^a Shuping Huang,^{*c} Li Liu^{*d} and Wai-Yeung Wong^{*b}

^a School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China

^b Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University. Hung Hom, Hong Kong, P.R. China

^c College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China

^d Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China.

^e Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China.

^{*}Authors to whom correspondence should be addressed.

E-mail: gzchenjinglin@126.com (J.-L. Chen); wai-yeung.wong@polyu.edu.hk (W.-Y. Wong); huangshp@gmail.com (S. Huang); liulihubei@hubu.edu.cn (L. Liu)

Fig. S3 ¹H NMR spectrum of **3** in CD_2Cl_2 .

Fig. S4 ¹H NMR spectrum of **4** in CD_2Cl_2 .

Fig. S6 31 P NMR spectrum of **2** in CD₂Cl₂.

Fig. S7 31 P NMR spectrum of **3** in CD₂Cl₂.

Fig. S8 31 P NMR spectrum of 4 in CD₂Cl₂.

Fig. S9 ¹H NMR spectra of **3** in CD_2Cl_2 at 218 K.

-2.92

Fig. S11 ¹H NMR spectrum of **2** in DMSO- d_6 at 298 K.

Fig. S12 Variable-temperature 31 P NMR spectra of **2** in DMSO- d_6 from 298 K to 358 K.

Fig. S13 Variable-temperature 31 P NMR spectra of **4** in CD₂Cl₂ from 298 K to 218 K.

Fig. S14 ESI-MS of complex 1.

Fig. S15 ESI-MS of complex 2.

Fig. S17 ESI-MS of complex 4

Fig. S19 The PXRD pattern of complex 1.

The PXRD pattern of complex 4. Fig. S22

Fig. S23 Plots of the frontier molecular orbitals involved in the lowest triplet excited state of complexes 1-4 based on the T1-optimized structure in CH2Cl2 media calculated by TD-DFT method at the PBE1PBE level (iso_{value} = 0.02).

Fig. S25 IR spectrum of complex 2.

Fig. S27 IR spectrum of complex 4.

Fig. S29 IR spectrum of complex 1b.

	Orbital	Energy	HOMO-LUMO	MO Contribution (%)				
		(eV)	Gap (eV)	Cu	Р	Ph	bpmtzH or fpmtzH	
1	HOMO	-6.50	4.44	35.12	19.68	41.27	3.93	
	LUMO	-2.06		0.76	0.00	1.51	97.73	
2	HOMO	-6.75	3.90	31.97	18.21	45.89	3.93	
	LUMO	-2.85		1.51	0.62	1.66	96.21	
3	HOMO	-6.56	3.89	32.35	18.69	46.16	2.80	
	LUMO	-2.67		0.96	0.23	0.87	97.94	
4	HOMO	-6.30	4.27	36.80	20.22	36.67	6.31	
	LUMO	-2.03		1.40	0.39	3.17	95.04	

Table S1 Partial molecular orbital compositions (%) by SCPA approach (C-squared population analysis proposed by Ros and Schuit) for 1–4 based on the S_0 -optimized structures in CH_2Cl_2 media calculated by TD-DFT method at the PBE1PBE level

Table S2 Partial molecular orbital compositions (%) by SCPA approach (C-squared population analysis proposed by Ros and Schuit) for 1–4 based on the T_1 -optimized structures in CH₂Cl₂ media calculated by TD-DFT method at the PBE1PBE level

	Orbital	Energy	HOMO-LUMO	MO Contribution (%)			
		(eV)	Gap (eV)	Cu	Р	Ph	bpmtzH or fpmtzH
1	HOMO	-5.85	2 75	37.67	20.09	31.11	11.13
	LUMO	-2.60	5.25	2.20	0.32	1.64	95.84
2	HOMO	-5.98	262	35.64	22.45	29.6	12.31
	LUMO	-3.36	2.02	0.04	1.97	5.8	92.19
3	HOMO	-5.82	2.67	34.37	24.13	30.25	11.25
	LUMO	-3.15	2.07	2.39	1.33	1.39	94.89
4	HOMO	-5.54	2.01	41.01	21.37	22.51	15.11
	LUMO	-2.53	5.01	0.11	1.76	5.37	92.76