Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting information for:

Exploration of an Easily Synthesized Fluorescent Probe for Detecting Copper in Aqueous Samples

Jesus Sanmartín-Matalobos.^{*} Ana M. García-Deibe. Matilde Fondo. Morteza Zarepour-Jevinani M. Raquel Domínguez-González and Pilar Bermejo-Barrera

*jesus.sanmartin@usc.es

	Table of Contents:	Page
1.	Main bond distances [Å] and angles [°] for Pd ₂ L ₂	S2
2.	Main bond distances [Å] and angles [°] for Co(L)(HL)(H ₂ O)	S3
3.	Diffraction data for Pd ₂ L ₂ and Co(L)(HL)(H ₂ O),	S4
4.	Spectroscopic characterization of the complexes.	S5-S7
5.	UV-Vis spectra of some representative compounds of this work	S8-S12
6.	Plot of emission intensity of H_2L upon gradual addition of Cu^{2+} ions. LOQ	S13
7.	Plot of emission intensity of H_2L upon gradual addition of CuO NPs. LOQ	S14
8.	Fluorescence titration spectra of H_2L with gradual addition of Pd^{2+}	S15
9.	Fluorescence titration spectra of H_2L with gradual addition of Zn^{2+} .	S16

Atoms	Distance	Atoms	Distance
Pd1-N13	2.009(3)	Pd2-N23	1.993(3)
Pd1-N12	2.023(3)	Pd2-N22	2.036(3)
Pd1-N21	2.074(3)	Pd2-N21	2.074(3)
Pd1-N11	2.080(3)	Pd2-N11	2.114(3)
Pd1…Pd2	3.0000(8)		
N11-S11	1.681(3)	N21-S21	1.681(3)
N11-C107	1.509(4)	N21-C207	1.505(4)
C101-S11	1.778(3)	C201-S21	1.767(3)
C113-N12	1.421(4)	C213-N22	1.424(4)
N12-C114	1.320(4)	N22-C214	1.309(4)
N13-C115	1.387(4)	N23-C215	1.384(4)
N13-C118	1.342(4)	N23-C218	1.338(4)
Atoms	Angle	Atoms	Angle
N13-Pd1-N12	81.27(11)	N23-Pd2-N22	80.63(11)
N13-Pd1-N21	97.92(10)	N23-Pd2-N21	174.54(11)
N12-Pd1-N21	169.24(10)	N22-Pd2-N21	93.92(11)
N13-Pd1-N11	173.42(11)	N23-Pd2-N11	100.32(10)
N12-Pd1-N11	94.04(10)	N22-Pd2-N11	168.08(10)
N21-Pd1-N11	85.06(10)	N21-Pd2-N11	84.97(10)
Pd1-N11-Pd2	91.32(10)	Pd1-N21-Pd2	92.67(10)

Table S1. Main bond distances [Å] and angles [°] for $Pd_2(L)_2$

Atoms	Distance	Atoms	Angle
Co1-N14	1.90(3)	Co2-N21	1.91(3)
Co1-N11	1.93(2)	Co2-N24	1.92(3)
Co1-N12	1.97(3)	Co2-O2W	1.96(2)
Co1-N13	1.98(3)	Co2-N25	1.98(2)
Co1-O1w	1.98(2)	Co2-N23	2.00(3)
Co1-N15	1.99(2)	Co2-N22	2.01(2)
Atoms	Angle	Atoms	Angle
N11-Co1-N13	170.0(11)	N21-Co2-N23	170.0(11)
O1w-Co1-N15	171.5(10)	N24-Co2-N22	171.0(11)
N14-Co1-N12	174.2(11)	O2W -Co2-N25	171.9(10)

Table S2. Main bond distances [Å] and angles [°] for $Co(L)(HL)(H_2O)$

	$Pd_2(L)_2$	$Co(L)(HL)(H_2O)$
Formula	$C_{38}H_{34}N_6O_4Pd_2S_2$	$C_{38}H_{37}CoN_6O_5S_2$
Molecular weight (g/mol)	915.63	780.78
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	Pc
a (Å)	12.8836(7)	10.3758(9)
b (Å)	15.6534(9)	10.3171(8)
c (Å)	17.2288(9)	33.283(3)
α (°)	90	90
β (°)	90.186(3)	97.525(7)
γ (°)	90	90
Volume (Å ³)	3474.55(45)	3532.2(5)
Ζ	4	4
Calc. Density (g/cm ³)	1.750	1.468
Absorption Coeff. μ (mm ⁻¹)	1.208	0.658
F(000)	1840	1624
$2\theta_{\rm max}/^{\rm o}$	52.82	50.56
All refl. / Indepedent refl.	51922 / 7096	13764 / 11883
$R_{\rm int}$	0.0320	0.0833
Data / restraints / parameters	7096 / 0 / 470	13764 / 2305 / 962
Final R Indices $[I > 2\sigma(I)]$	0.0313. 0.0609	0.1245. 0.2683
R Indices. all data	0.0541.0.0678	0.1565. 0.2951
Máx Residuals (e Å ⁻³)	0.579 -0.586	1 807 -2 055

Table S3. Diffraction data for Pd_2L_2 and $Co(L)(HL)(H_2O)$

Fig. S1. *Left*: Partial view of the infrared spectra of H₂L (bottom) and Cu(HL)₂ (top), showing the presence of $v(NH)_{sulfonamide}$ (at 3310 cm⁻¹) and the absence of $v(NH)_{pyrrole}$ in the complex. *Right*: Partial view of the mass spectrum of Cd₂(L)₂·4H₂O showing the found (top) and the calculated (bottom) molecular ion peak.

The good agreement between found and calculated isotopic profile of the peak attributed to $Cd_2(L)_2$ (Fig. S1, right), representing $M_2(L)_2$ complexes, is a clear sign of the obtaining of a dinuclear complex. Monodeprotonation of the ligand in $Cu(HL)_2$, representing $M(HL)_2$ complexes, is easy to see because pyrrole v(NH) band is absent in its infrared spectrum (Fig. S1, left), while sulfonamide v(NH) band is present at about 3310 cm⁻¹. Since sulfonamide v(NH) band undergoes *ca*. 52 cm⁻¹ shift to higher frequencies, a hydrogen bond has been deduced.

Fig. S2. Partial view of the ¹H NMR spectra of H₂L (bottom), Co(L)(HL)(H₂O) (medium) and Cd₂(L)₂·4H₂O (top). Signals of NH_{pyrrol} (11.68 ppm) and NH_{sulfonamide} (7.88 ppm) are highlighted in red, while imino signals are highlighted in blue.

Fig. S2 shows the absence of NH_{pyrrol} (11.68 ppm) and $NH_{sulfonamide}$ (7.88 ppm) signals in the spectrum of $Cd_2(L)_2 \cdot 4H_2O$. The azomethine -CH=N signal which observed at 8.15 ppm in H₂L undergoes shift to the low field (about 0.1 ppm), thus, indicating coordination of the ligand through the imine nitrogen atom. It must be noted that in $Co(L)(HL)(H_2O)$ one of the ligand molecules is acting as a dianionic tridentate chelating ligand and the other one is acting as a monoanionic bidentate chelating ligand. Although the sulfonamide functional group $NH_{sulfonamide}$ remains protonated in the monoanionic form HL (as signals integration shown), an overlap with tosyl signal (H2+H6) prevents its observation in $Co(L)(HL)(H_2O)$.

Fig. S3. Partial view of the COSY spectrum of $Pd_2(L)_2$.

The 2D COSY spectrum of $Pd_2(L)_2$ in dmso-d₆ at room temperature revealed two different chemical shifts for the two geminal protons of the methylenes (δ about 4.4 and 6.0 ppm; J about 14 Hz), despite being not placed in a chiral environment, and therefore are diastereotopic protons.

Fig. S4. Partial view of the absorption spectra of H₂L (100 μ M,) before and after addition of Zn²⁺ (100 μ M), measured in methanol (pH 7.0-7.5). Spectral data were recorded at 10 minutes after the addition of Zn²⁺ (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0 mL) to H₂L (1.0 mL) at room temperature.

Fig. S5. Partial view of the absorption spectra of H₂L (100 μ M,) before and after addition of Cd²⁺ (100 μ M), measured in methanol (pH 7.0-7.5). Spectral data were recorded at 10 minutes after the addition of Cd²⁺ (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0 mL) to H₂L (1.0 mL) at room temperature.

Fig. S6. Partial view of the absorption spectra of H₂L (100 μ M,) before and after addition of Ni²⁺ (100 μ M), measured in methanol (pH 7.0-7.5). Spectral data were recorded at 10 minutes after the addition of Ni²⁺ (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0 mL) to H₂L (1.0 mL) at room temperature.

Fig. S7. Partial view of the absorption spectra of H₂L (100 μ M,) before and after addition of Pd²⁺ (100 μ M), measured in methanol (pH 7.0-7.5). Spectral data were recorded at 10 minutes seconds after the addition of Pd²⁺ (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0 mL) to H₂L (1.0 mL) at room temperature.

Fig. S8. Partial view of the absorption spectra of H₂L (100 μ M,) before and after addition of Co²⁺ (100 μ M), measured in methanol (pH 7.0-7.5). Spectral data were recorded at 10 minutes after the addition of Co²⁺ (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0 mL) to H₂L (1.0 mL) at room temperature.

Fig. S9. Plot of emission intensity of H₂L (100 μ M) upon gradual addition of Cu²⁺ (100 μ M). Spectral data were recorded at about ten minutes after the addition of Cu²⁺ (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mL) to H₂L (1.0 mL). The limits of detection (LOD) and quantification (LOQ) were calculated according to LOD = 3SD/*m* and LOQ = 10SD/m, where SD is the standard deviation of eleven measurements of a blank and m is the slope of the calibration graph.

LOQ(mg/l)= 1,84E-03 LOD(mg/l) 5,51E-04 LOQ(μM)= 2,89E-02 LOQ(μM) 8,67E-03

Fig. S10. Plot of emission intensity of H₂L (100 μ M) upon gradual addition of CuO NPs (100 μ M). Spectral data were recorded at about ten minutes after the addition of Cu²⁺ (0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 and 0.1 mL) to H₂L (1.0 mL). The limits of detection (LOD) and quantification (LOQ) were calculated according to LOD = 3SD/*m* and LOQ = 10SD/m, where SD is the standard deviation of eleven measurements of a blank and m is the slope of the calibration graph.

LOQ CuO NPs (mg/l)=	0.0461	LOD CuONPs (mg/l)	0.014
LOQ CuO NPs (µM)=	0.5798	LOD CuONPs (µM/l)	0.174

Fig. S11. The linear relationship between fluorescence intensity and Pd^{2+} concentrations measured in methanol (pH 7.0-7.5) under $\lambda_{exc} = 378$ nm. *Inset:* Fluorescence titration spectra of H₂L (100 µM) with gradual addition of Pd(OAc)₂ (100 µM). Spectral data were recorded at 60 seconds after the addition of Pd²⁺ (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mL) to H₂L (1.0 mL) at room temperature.

The changes in the fluorescence spectrum of H_2L upon titration with nickel(II) acetate tetrahydrate and cobalt(II) acetate tetrahydrate were similar to the observed after the addition of Pd^{2+} .

Fig. S12. The linear relationship between normalized fluorescence intensity and Zn^{2+} concentrations measured in methanol (pH 7.0-7.5) under $\lambda_{exc} = 378$ nm. *Inset:* Fluorescence titration spectra of H₂L (100 µM) with gradual addition of $Zn(OAc)_2 \cdot 2H_2O$ (100 µM). Spectral data were recorded at about ten minutes after the addition of Zn^{2+} (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mL) to H₂L (1.0 mL) at room temperature.

The changes in the fluorescence spectrum of H_2L upon titration with Zn^{2+} ions are shown in Fig. S11. It is apparent that with increasing Zn^{2+} ion concentration, the fluorescence intensity of H_2L at 498 nm increased. The fluorescence intensity varied linearly with the concentrations of Zn^{2+} ions below 33 μ M (2.1 mg/L), increasing by over 40%. The changes in the fluorescence spectrum of H_2L upon titration with cadmiun(II) acetate dihydrate, were similar to the observed after the addition of Zn^{2+} . However, enhancement of the fluorescence was lower than the observed in the presence of Zn^{2+} , and therefore no further studies were performed on H_2L upon titration with Cd^{2+} .