Electronic Supplementary Information (ESI) for the article, "Structures, Electron Density and Characterization of Novel Photocatalysts, (BaTaO₂N)_{1-x}(SrWO₂N)_x Solid Solutions"

Keisuke Hibino, Masatomo Yashima,^{*} Takayoshi Oshima, Kotaro Fujii, Kazuhiko Maeda Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-2-1-W4-17, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan

* Corresponding author

Electronic Supplementary Information A: Color change of samples in ammonolysis

Photo 1: Photos of (a) oxide precursor for (BaTaO₂N)_{0.99}(SrWO₂N)_{0.01} and (b) oxynitride (BaTaO₂N)_{0.99}(SrWO₂N)_{0.01}. (a) The oxide precursor was white, while (b) the oxynitride was brown. The color change between insulating oxide precursor and semiconducting oxynitride corresponds to change in UV-Vis spectra (Fig. 7).

Electronic Supplementary Information B: Experimental

details of photocatalytic activity measurements

To investigate the photocatalytic activities of $(BaTaO_2N)_{1-x}(SrWO_2N)_x$ (x = 0, 0.01, and 0.02), colloidal IrO₂ was loaded on $(BaTaO_2N)_{1-x}(SrWO_2N)_x$. A colloidal IrO₂ solution was prepared by hydrolysis of Na₂IrCl₆.^[S1] First, Na₂IrCl₆ (16 mg) was dissolved in H₂O (50 mL), and aqueous NaOH solution was added until the solution pH was 12. The solution was heated at 348 K for 30 min, and cooled to room temperature in an ice-water bath. Aqueous HNO₃ solution was then dropped slowly into the cooled solution until it reached pH 9, followed by heating 348 K for 30 min again. The obtained deep-blue solution of colloidal IrO₂ was diluted to a total volume of 50 mL. (BaTaO₂N)_{1-x}(SrWO₂N)_x powders (0.13 g) were dispersed in H₂O (25 mL) and the as-prepared colloidal IrO₂ solution (0.5 wt% with respect to catalyst mass) was added. The suspension was agitated for 1 h at room temperature and centrifuged to collect residual solids. The samples obtained, IrO₂-loaded (BaTaO₂N)_{1-x}(SrWO₂N)_x, were oven-dried at 343 K overnight.

Photocatalytic reactions were carried out in a Pyrex top-irradiation vessel connected to a glass closed gas circulation system. In the vessel, IrO_2 -loaded $(BaTaO_2N)_{1-x}(SrWO_2N)_x$ photocatalyst powder (100mg) and La_2O_3 (100 mg) were dispersed in water (150 mL), and AgNO₃ (1.5 mmol) was added. Air in the solution was removed by several evacuations and Ar gas (approx. 5 kPa) was introduced into the reaction system before conducting photocatalytic reaction. Subsequently, the vessel was irradiated under visible light. The light source was a 300-W xenon lamp, and the light wavelength was controlled to be over 420 nm using a combination of a cold mirror (CM1), cut-off filter (L-42), and water filter. The reactant solution was maintained at room temperature using a water bath during reactions. Evolved gas was analyzed by gas chromatography (GL Sciences Inc., GC-3200-SYG with TDC detector, argon carrier gas).

References

[S1] A. Harriman, I. J. Pickering, J. M. Thomas, P. A. Christensen, *J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases*, 1988, **84**, 2795–2806.

Electronic Supplementary Information C: Refined crystallographic parameters and reliability factors for synchrotron X-ray diffraction data of $(BaTaO_2N)_{1-x}(SrWO_2N)_x$ (x = 0, 0.01, and 0.02). Composition *x* dependence of lattice parameters of $(BaTaO_2N)_{1-x}(SrWO_2N)_x$.

Table S1. Refined crystallographic parameters and reliability factors for synchrotron X-ray diffraction data ofBaTaO2N measured at 302 K.

Atom	Site	Occupancy	Atomic coordinates			Isotropic atomic displacement parameter
		g	x	у	z	$100 U_{ m iso}$ / Å ²
Ba	1 <i>a</i>	1	1/2	1/2	1/2	0.570(9)
Ta	1b	1	0	0	0	0.743(7)
0	3 <i>c</i>	2/3	1/2	0	0	0.67(5)*
Ν	3c	1/3	1/2	0	0	0.67(5)*

Crystal system: cubic, space-group type: Pm3m

Wavelength: λ = 0.3997119(17) Å

 $U_{iso}(O) = U_{iso}(N)$

Lattice parameters: a = b = c = 4.11265(2) Å, $\alpha = \beta = \gamma = 90^{\circ}$

Reliability factors: $R_{wp} = 6.55\%$, $R_p = 4.43\%$, $R_B = 1.86\%$, $R_F = 0.83\%$.

BVS of *B*-site Ta cation was estimated to be 4.53, which agrees with the formal charge of 5.

Atom	Site	Occupancy	Ato	mic coordir	nates	Atomic displacement
		Occupancy	71101		lates	parameter
		g	x	у	z	$100~U_{ m iso}$ / ${ m \AA}^2$
Ва	1 <i>a</i>	100/101	1/2	1/2	1/2	$0.549(11)^a$
Sr	1 <i>a</i>	1/101	1/2	1/2	1/2	$0.549(11)^{a}$
Ta	1 <i>b</i>	100/101	0	0	0	0.703(9) ^b
W	1b	1/101	0	0	0	0.703(9) ^b
Ο	3 <i>c</i>	2/3	1/2	0	0	0.63(6) ^c
Ν	3 <i>c</i>	1/3	1/2	0	0	0.63(6) ^c

Table S2. Refined crystallographic parameters and reliability factors for synchrotron X-ray diffraction data of $(BaTaO_2N)_{0.99}(SrWO_2N)_{0.01}$ measured at 302 K.

Crystal system: cubic, space-group type: $Pm\bar{3}m$

Wavelength: $\lambda = 0.3997119(17) \text{ Å}$

 ${}^{a}U_{iso}(Ba) = U_{iso}(Sr)$ ${}^{b}U_{iso}(Ta) = U_{iso}(W)$ ${}^{c}U_{iso}(O) = U_{iso}(N)$ Lattice parameters: a = b = c = 4.11162(2) Å, $\alpha = \beta = \gamma = 90^{\circ}$ Reliability factors: $R_{wp} = 7.55\%$, $R_{p} = 4.89\%$, $R_{B} = 1.58\%$, $R_{F} = 0.78\%$ BVS of *B*-site Ta,W cations were estimated to be 4.54, which agrees with the formal charge of 5.

Atomic displacement Occupancy Atomic coordinates parameter Atom Site 100 $U_{\rm iso}$ / Å² х zg y Ba 1*a* 100/102 1/21/2 1/2 $0.575(16)^{a}$ 1/21/2 1/2 $0.575(16)^{a}$ Sr 1*a* 2/102 0 0 $0.664(14)^{b}$ 1b100/102 0 Ta W 1b0 0 0 $0.664(14)^{b}$ 2/102 Ο 3*c* 2/3 0 0 $0.59(9)^{c}$ 1/21/20 Ν 3с 1/3 0 $0.59(9)^{c}$

Table S3. Refined crystallographic parameters and reliability factors for synchrotron X-ray diffraction data of $(BaTaO_2N)_{0.98}$ (SrWO₂N)_{0.02} measured at 302 K.

Crystal system: cubic, space-group type: $Pm\bar{3}m$

Wavelength: $\lambda = 0.3997119(17)$ Å

 $^{a}U_{\rm iso}({\rm Ba}) = U_{\rm iso}({\rm Sr})$

 ${}^{b}U_{iso}(Ta) = U_{iso}(W)$ ${}^{c}U_{iso}(O) = U_{iso}(N)$

Lattice parameters: a = b = c = 4.11012(3) Å, $\alpha = \beta = \gamma = 90^{\circ}$

Reliability factors: $R_{wp} = 11.01\%$, $R_p = 6.38\%$, $R_B = 3.34\%$, $R_F = 1.46\%$

BVS of *B*-site Ta,W cations were estimated to be 4.55, which agrees with the formal charge of 5.

Figure S1. Rietveld patterns of synchrotron X-ray powder diffraction data of $(BaTaO_2N)_{1-x}(SrWO_2N)_x$ [(a) x = 0, (b) x = 0.01, and (c) x = 0.02] including silicon internal standard (NIST SRM640c) at 302 K. The 2 θ range of the analyzed data was from 3.0–53.2° and step interval of 0.01°. Brown crosses and green lines denote observed and calculated intensities, respectively. Green and red ticks represent Bragg peak positions of $(BaTaO_2N)_{1-x}(SrWO_2N)_x$ and silicon (NIST SRM640c), respectively. Blue lines at the bottom represent profile difference between observed and calculated intensities.

Figure S2. Variation in lattice parameter *a* of $(BaTaO_2N)_{1-x}(SrWO_2N)_x$ solid solutions with $SrWO_2N$ content *x*. The red solid linear line was obtained from the least-squares fit. The black dashed line denotes calculated lattice parameter $a_{cal}(x)$, obtained using the equation $a_{cal}(x) = (1 - x)a(BaTaO_2N) + x a(SrWO_2N)$. Here, $a(BaTaO_2N)$ and $a(SrWO_2N)$ are the literature lattice parameters of $BaTaO_2N$ and $SrWO_2N$, respectively^[S2,S3]. The results indicate that the Vegard's law is valid and that both Ba^{2+} and Ta^{5+} are substituted by Sr^{2+} and W^{5+} , respectively.

References

[S2] F. Pors, R. Marchand, Y. Laurent, P. Bacher and G. Roult, Mater. Res. Bull., 1988, 23, 1447–1450.

[S3] M. Yashima, U. Fumi, H. Nakano, K. Omoto and J. R. Hester, J. Phys. Chem. C, 2013, 117, 18529–18539.

Electronic Supplementary Information D: Estimation of band gap of $(BaTaO_2N)_{1-x}(SrWO_2N)_x$ (x = 0, 0.01, and 0.02)

Figure S3. Band structures of $(BaTaO_2N)_8$ (left) and $(BaTaO_2N)_7$ (SrWO₂N) (right), which show the direct band gaps.

Figure S4. Tauc plots of $(BaTaO_2N)_{1-x}(SrWO_2N)_x$ [(a) x = 0, (b) x = 0.01, and (c) x = 0.02]. The absorption edge has the form $\alpha hv = C(hv - E_g)^n$, where E_g is the band gap, α is the absorption coefficient, hv is the photon energy, and *C* is a constant. Here, *n* is 1/2 because (BaTaO_2N)_8 and (BaTaO_2N)_7(SrWO_2N) have direct band gaps (Figure S3). Estimated band gaps were 2.0 eV for all compositions of (a) x = 0, (b) x = 0.01, and (c) x = 0.02.

Electronic Supplementary Information E:Photocatalytic activity results for $(BaTaO_2N)_{1-x}(SrWO_2N)_x$ (x = 0 and 0.02)

Figure S5. Time course of O₂ evolution on BaTaO₂N under visible-light irradiation ($\lambda > 420$ nm) from silver nitrate solution containing of La₂O₃ (100 mg). Reaction conditions: 0.5 wt% IrO₂-loaded BaTaO₂N catalyst (100 mg), aqueous silver nitrate solution (10.0 mM, 150 mL), and top-irradiation-type reaction vessel. Light source: xenon lamp (300 W) with cutoff filter.

Figure S6. Time course of O₂ evolution on $(BaTaO_2N)_{0.98}(SrWO_2N)_{0.02}$ under visible-light irradiation ($\lambda > 420$ nm) from silver nitrate solution containing La₂O₃ (100 mg). Reaction conditions: 0.5 wt% IrO₂-loaded $(BaTaO_2N)_{0.98}(SrWO_2N)_{0.02}$ catalyst (100 mg), aqueous silver nitrate solution (10.0 mM, 150 mL), and top-irradiation-type reaction vessel. Light source: xenon lamp (300 W) with cutoff filter.

End of the Electronic Supplementary Information

p. 11