Synthetic [NiFe] Models with a Fluxional CO ligand

Xiaoxiao Chu,^a Xin Yu,^a Sakthi Raje,^b Raja Angamuthu,^b Jianping Ma,^c Chen-Ho Tung,^c and Wenguang Wang^{*a}

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China ^bLaboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC), Indian Institute of Technology Kanpur, India, Kanpur 208016

^cCollege of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan,

250014, China

Experimental Section	p S2
General Information and preparation of compounds	p S2
I. Supplementary Figures	p S4
Figure S1. IR spectrum of [(dppe)Ni(pdt)FeCp*(CO)] ⁺ mixture	p S4
Figure S2. ³¹ P NMR spectrum of [(dppe)Ni(pdt)FeCp*(CO)] ⁺ mixture	p S5
Figure S3. ESI-MS of [(dppe)Ni(pdt)FeCp*(CO)] ⁺	p S6
Figure S4. ³¹ P NMR spectrum of [1'(CO)] ⁺	p S7
Figure S5. ¹ H NMR spectrum of [1 '(CO)] ⁺	p S8
Figure S6. ¹ H NMR spectrum of [(dppe)Ni(pdt)FeCp*(CO)] ⁺ mixture	p S9
Figure S7. CV for [1' (CO)] ⁺	p S10
Figure S8. CV for [(dppe)Ni(pdt)FeCp*(CO)] ⁺ mixture	p S11
Figure S9. ³¹ P NMR spectrum of [(dppbz)Ni(pdt)FeCp*(CO)] ⁺ mixture	p S12
Figure S10. ¹ H NMR spectrum of [(dppbz)Ni(pdt)FeCp*(CO)] ⁺ mixture	p S13
Figure S11. ESI-MS of [(dppbz)Ni(pdt)FeCp*(CO)] ⁺	p S14
Figure S12. Structures of [2 (CO)] ⁺ and [2 '(CO)] ⁺	p S15
Figure S13. IR spectrum of [1'(CO)] ²⁺	p S16
Figure S14. UV-vis spectra	p S17
Figure S15. Transformation of [1'(CO)] ²⁺ to [1(CO)] ²⁺ monitored by UV-vis spec	trap S18
Figure S16. IR spectra for the oxidation of [(dppe)Ni(pdt)FeCp*(CO)] ⁺	p S19
Figure S17. IR spectra for the oxidation of [(dppbz)Ni(pdt)FeCp*(CO)] ⁺	p S20
Figure S18-S21. CV of [1'(CO)] ⁺ with various amounts of acetic acid	p S21
Figure S22. Comparison of the IR spectrum of [1'(CO)] ⁺ before and after catalys	sisp S26
Figure S23-S24. CV for the mixture of [1'(CO)] ⁺ and [1(CO)] ⁺ with various amou	nts of acetic acid
	p S27
Scheme S1. Proposed Mechanism for H ₂ production by [1'(CO)] ⁺	p S29

I. Experimental section

All manipulations were typically carried out under dry nitrogen atmosphere by using standard Schlenk

techniques. All reagents were purchased from Sigma-Aldrich, and used as received. Ni(pdt)(dppe), Ni(pdt)(dppbz), and Cp*Fe(CO)(MeCN)₂PF₆ were prepared according to the reported methods.^{1,2} Dichloromethane (CH₂Cl₂), diethylether, acetonitrile, *n*-hexane were HPLC-grade and typically stored over activated 4 Å molecular sieves under nitrogen. All solvents were stored under nitrogen. ¹H and ³¹P NMR spectra were recorded on Bruker Avance 500 spectrometers. All NMR spectra were recorded in J. Young NMR tubes and ³¹P NMR spectra were referenced to external 8% H₃PO₄ as internal standards. FT-IR spectra were recorded on a PerkinElmer FT-IR Spectrometer Spectrum Two (the range: from 4000 to 450 cm⁻¹). Crystallographic data were collected using a Bruker SMART APEX II diffractometer with a CCD area detector (graphite monochromatic Mo Kα radiation) at 173 K. Cyclic voltammetry was measured by a CHI 760e electrochemical workstation (Shanghai Chen Hua Instrument Co., Ltd.) under nitrogen at room temperature (electrode types: a glassycarbon electrode as working electrode, Pt wire electrode as counter electrode, and Ag wire electrode as reference electrode).

*[Cp*Fe(CO)(pdt)Ni(dppe)]BF₄ ([1'(CO)]BF₄).* A dark-red solution of (pdt)Ni(dppe) (145 mg, 0.26 mmol) in 20 mL CH₂Cl₂ was added dropwise to a stirred solution of Cp*Fe(CO)(MeCN)₂BF₄ (100 mg, 0.26 mmol) in 20 mL of CH₂Cl₂. The resultant brown solution was heated at 40 °C, and the conversion was monitored by IR spectroscopy. After 24 h, the mixture was concentrated, and hexane (30 mL) was added. A brown precipitate was collected by filtration. Yield: 170 mg (75%). Single crystals suitable for X-ray diffraction were obtained by layering hexane into CH₂Cl₂ at -30 °C. ¹H NMR (500 MHz, CD₂Cl₂): δ 7.73–7.45 (m, 20H), 2.88 (m, 2H, PCH₂CH₂P), 2.77 (m, 1H, SCH₂CH₂CH₂S), 2.33 (m, 2H, PCH₂CH₂P), 2.09 (m, 2H, SCH₂), 2.02 (m, 2H, SCH₂CH₂CH₂S), 1.71 (m, 1H, SCH₂CH₂CH₂S), 1.40 (s, 15H, C₅Me₅). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ 57.8. FT-IR (CH₂Cl₂, v_{CO}): 1880 cm⁻¹. ESI-MS: calcd for [1'(CO)]⁺, 781.1090; found, 781.1066. Anal. Calcd. for C₄₀H₄₅OP₂S₂BF₄FeNi: C, 55.27; H, 5.22. Found: C, 55.30; H, 5.27.

Oxidation of [1'(*CO*)]*BF*₄ *to* [1(*CO*)](*BF*₄)₂. To a dark green solution of [1'(*CO*)]*BF*₄ (50 mg, 0.058 mmol) in 5 mL CH₂Cl₂ was added AgBF₄ (12 mg, 0.062 mmol), the color changed to red brown immediately. Then the solution was stirred at room temperature for 1 h until the color became dark green. The conversion was monitored by FI-IR spectra. The solvent was removed under reduced pressure and the green residue was washed with *n*-hexane. Yield: 38 mg (68 %). FT-IR (CH₂Cl₂, v_{CO}): 2020 cm⁻¹.

[Cp*Fe(CO)(pdt)Ni(dppe)]BF₄ ([1(CO)]BF₄).To the dark green solution of [1(CO)](BF₄)₂ (20 mg, 0.021 mmol) in 5 mL CH₂Cl₂ was added Cp*₂Fe (8 mg, 0.024 mmol). The color changed momently to brown. The solvent was removed under reduced pressure and the residue was washed with *n*-hexane. Yield: 15 mg (82 %). FT-IR (CH₂Cl₂, v_{CO}): 1917 cm⁻¹. ³¹P{¹H} NMR (202 MHz, CH₂Cl₂): δ 43.1. ¹H NMR (500 MHz, CD₂Cl₂): δ 7.85–7.55 (m, 20H), 3.25 (m, 2H, PCH₂CH₂P), 3.04 (m, 1H, SCH₂CH₂CH₂S), 3.00 (m, 2H, PCH₂CH₂P), 2.88 (m, 1H, SCH₂CH₂CH₂CH₂S), 2.54 (m, 2H, SCH₂), 2.50 (m, 2H, SCH₂CH₂CH₂S), 1.21 (s, 15H, C₅Me₅) ESI-MS: calcd for [Cp*Fe(CO)(pdt)Ni(dppe)]⁺, 781.1066; found, 781.1090. Anal. Calcd. for C₄₀H₄₅OP₂S₂BF₄FeNi: C, 55.27; H, 5.22. Found: C, 55.27; H, 5.25.

[Cp*Fe(CO)(pdt)Ni(dppbz)]BF₄ complexes. A dark-red solution of (pdt)Ni(dppbz) (145 mg, 0.24 mmol) in 20 mL CH₂Cl₂ was added dropwise to a stirred solution of Cp*Fe(CO)(MeCN)₂BF₄ (93 mg, 0.24 mmol) in 20 mL of CH₂Cl₂. The reaction was monitored by IR spectroscopy unless the v_{CO} band of Cp*Fe(CO)(MeCN)₂BF₄ disappeared. After 24 h, the solution was concentrated into an approximately 5 mL CH₂Cl₂ and 30 mL of *n*-hexane was added. A brown precipitate was collected by filtration. Yield: 175 mg (73.4 %).The product isolated contains two isomers [2(CO)]BF₄ and [2'(CO)]BF₄. The ratio of [2(CO)]BF₄ / [2'(CO)]BF₄ was found to be 3:1 after heating the CH₂Cl₂ solutions at 40 °C for 72 h. Prolonged the reaction time at 40 °C or increasing the temperature to 50 °C caused decomposition of the complexes. ESI-MS: calcd for [Cp*Fe(CO)(pdt)Ni(dppbz)]⁺, 829.1090; found, 829.1071. Anal. Calcd. for C₄₄H₄₅OP₂S₂BF₄FeNi: C,57.61 ; H, 4.94. Found: C, 57.69; H, 4.97.

Compound [**2**'(CO)]BF₄. ¹H NMR (500 MHz, CD₂Cl₂): δ 7.75–7.43 (m, 24H), 2.70 (dt, 1H, SCH₂CH₂CH₂S), 2.38 (m, 1H, SCH₂CH₂CH₂S), 2.03 (m, 2H, PCH₂CH₂P), 1.62 (m, 2H, PCH₂CH₂P), 1.36 (s, 15 H, Cp*-CH₃). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ 59.0. FT-IR (CH₂Cl₂, v_{CO}): 1880 cm⁻¹.

Compound [2(CO)]BF₄. ¹H NMR (500 MHz, CD₂Cl₂): δ 7.80–7.20 (m, 24H), 2.69 (dt, 1H, SCH₂CH₂CH₂S), 2.61 (m, 1H, SCH₂CH₂CH₂S), 2.56 (m, 2H, PCH₂CH₂P), 2.27 (m, 2H, PCH₂CH₂P), 1.17 (s, Cp*-CH₃), ³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ 46.0. FT-IR (CH₂Cl₂, v_{CO}): 1920 cm⁻¹.

*[Cp*Fe(CO)(pdt)Ni(dppbz)](BF₄)*² *([2(CO)](BF₄)*²). Dicationic complex [2(CO)](BF₄)² was prepared by following the same procedure of [1(CO)](BF₄)² but starting from [2(CO)]BF₄. Single crystals suitable for X-ray diffraction were obtained by layering hexane into CH₂Cl₂ at -30 °C. Yield: 40 mg (73 %). FT-IR (CH₂Cl₂, v_{CO}): 2022 cm⁻¹. Anal. Calcd. for C₄₄H₄₅OP₂S₂B₂F₈FeNi: C,52.63 ; H, 4.52. Found: C, 52.71; H, 4.63.

EPR Experiments. EPR samples were prepared in a glovebox. The sample concentration was approximately 2 mM in CH_2CI_2 . EPR spectra were recorded by using a Bruker ESP-300E spectrometer at 9.8 GHz, X-band, with 100 Hz field modulation.

II. Supplementary Figures

Figure S1. IR spectra collected for the reaction of $Cp^*Fe(CO)(MeCN)_2BF_4$ with (pdt)Ni(dppe) (top), and $Cp^*Fe(CO)(MeCN)_2BF_4$ (bottom) in CH_2CI_2 .

Results: v_{CO} (cm⁻¹, CH₂Cl₂) for [(dppe)Ni(pdt)FeCp*(CO)]⁺, 1917 and 1880.

Figure S2. ³¹P NMR spectrum of $[(dppe)Ni(pdt)FeCp^*(CO)]^+$ in CD₂Cl₂, which was referenced to external 8% H₃PO₄ as internal standard.

Results: [(dppe)Ni(pdt)FeCp*(CO)]⁺ contains two isomers with 1:1 ratio.

Figure S3. ESI-MS spectrum of $[(dppe)Ni(pdt)FeCp^{*}(CO)]^{+}$ in $CH_{2}Cl_{2}$.

Results:

Calcd for $[(dppe)Ni(pdt)FeCp^{*}(CO)]^{+}$, 781.1066; found, 781.1090.

Figure S4. ³¹P NMR spectrum of [**1**'(CO)]BF₄ in CD₂Cl₂.

Figure S5. ¹H NMR spectrum of $[1'(CO)]BF_4$ in CD_2CI_2 .

Selected assignments: C_5Me_5 : δ 1.40 (15H)

Figure S6. ¹H NMR spectrum of $[(dppe)Ni(pdt)FeCp^{*}(CO)]^{+}$ in CD_2Cl_2 .

Selected assignments:

 δ 1.40 (15H) to C₅Me₅, which is consistent with the assignment in Figure S4;

 δ 1.21 (15H) to C₅Me₅ of [1(CO)]⁺.

Figure S7. Cyclic voltammogram for **1**'(CO)]BF₄. Conditions: 1 mM sample in CH₂Cl₂ (top), and CH₃CN (bottom), 0.1 M *n*-Bu₄NPF₆ (black), 0.1 M *n*-Bu₄NBF₄ (blue); scan rate, 100 mV/s; potentials vs Fc^{+/0}.

Results:

In CH₂Cl₂, $E_{1/2}[\mathbf{1'(CO)}]^{2+/+} = 0.09 \text{ V}$, $i_{pa}/i_{pc} = 0.97$; $E_{1/2}[\mathbf{1'(CO)}]^{+/0} = -1.67 \text{ V}$, quasi-reversible; $E_{1/2}[\mathbf{1'(CO)}]^{0/-} = -1.99 \text{ V}$, quasi-reversible.

In CH₃CN, $E_{1/2}[\mathbf{1}'(CO)]^{2+/+} = 0.16$ V, irreversible; $E_{1/2}[\mathbf{1}'(CO)]^{+/0} = -1.53$ V, quasi-reversible; $E_{1/2}[\mathbf{1}'(CO)]^{0/-} = -1.75$ V, quasi-reversible.

Figure S8. Cyclic voltammogram for $[(dppe)Ni(pdt)FeCp^*(CO)]^+$ mixture. Conditions: 1 mM sample in CH₂Cl₂, 0.1 M *n*-Bu₄NPF₆ (black), *n*-Bu₄NBF₄ (blue); scan rate, 100 mV/s; potentials vs Fc^{+/0}.

Combining with the results in Figure S7, the assignments are:

$$\begin{split} E_{1/2}[\mathbf{1}(\mathrm{CO})]^{2+/+} &= 0.32 \ \mathrm{V}, \ i_{\mathrm{pa}}/i_{\mathrm{pc}} = 0.97; \\ E_{1/2}[\mathbf{1}'(\mathrm{CO})]^{2+/+} &= 0.09 \ \mathrm{V}, \ i_{\mathrm{pa}}/i_{\mathrm{pc}} = 0.98 \end{split}$$

Figure S9. ³¹P NMR spectrum of [(dppbz)Ni(pdt)FeCp*(CO)]⁺.

Assignments:

 δ 58.7 to $\left[\textbf{2'(CO)}\right]^{+};$

 δ 46.0 to $\left[\textbf{2}(\text{CO})\right]^{*}$

Figure S10. ¹H NMR spectrum of [(dppbz)Ni(pdt)FeCp*(CO)]⁺.

Selected assignments:

 δ 1.36 to C₅Me₅ of [2'(CO)]⁺,

 δ 1.17 to C₅*Me*₅ of [2(CO)]⁺

Figure S11. ESI-MS spectrum of $[(dppbz)Ni(pdt)FeCp^{*}(CO)]^{+}$ in $CH_{2}Cl_{2}$.

Results:

Calcd for [(dppbz)Ni(pdt)FeCp*(CO)]⁺, 829.1090; found, 829.1071.

Figure S12. Structures of $[2(CO)]^+$ and $[2'(CO)]^+$ cations with 50% probability thermal ellipsoids. For clarity, tetrafluoroborate counterions have been omitted.

Figure S13. IR spectra of $[1'(CO)]BF_4$ in CH_2CI_2 (up), reaction of $[1'(CO)]BF_4$ with AgBF₄ (bottom).

Result:

 $v_{CO} \text{ of } [1'(CO)]^{2+} (cm^{-1}, CH_2Cl_2), 1970.$

Figure S14. UV-vis spectra of $[1(CO)]^+$, $[1'(CO)]^+$, $[1(CO)]^{2+}$ and $[1'(CO)]^{2+}$ in CH_2CI_2 .

Figure S15. UV-vis spectra of the conversion from $[1'(CO)]^{2+}$ to $[1(CO)]^{2+}$ (5×10⁻⁴ M in CH₂Cl₂) and the absorbance of peak at 285 nm vs time.

Result:

 $k_{\rm obs} = 8.50128 \times 10^{-4} \text{ s}^{-1}$ Half-life $t_{1/2} = 0.6932 / k_{\rm obs} = 13.59$ min.

This result is consistent with $t_{1/2} = 10.8$ min obtained from IR spectroscopic analysis.

Figure S16. IR spectra of (a) $[1'(CO)]^+$ in CH₂Cl₂, (b) treatment of the solution (a) with AgBF₄ solids; the solution of b stayed at room temperature for 5 min (c) and 30 min (d); (e) treatment solution of d by Cp*₂Fe.

Result:

 $[1'(CO)]^+ - e^- \rightarrow [1'(CO)]^{2+};$

 $[1'(CO)]^{2+} \rightarrow [1'(CO)]^{2+};$

 $[\mathbf{1}(\mathrm{CO})]^{2+} + \mathrm{e}^{-} \rightarrow [\mathbf{1}(\mathrm{CO})]^{+}$

Figure S17. IR spectra of $[2(CO)]^+$ in CH₂Cl₂ (bottom), treatment of $[2(CO)]^+$ with AgBF₄ solids (middle), and then with Cp*₂Fe (up).

Result:

 $\left[\mathbf{2}(\text{CO}) \right]^{\scriptscriptstyle +} \text{-} \text{e}^{\scriptscriptstyle -} \boldsymbol{\rightarrow} \left[\mathbf{2}(\text{CO}) \right]^{2+};$

 $[\mathbf{2}(\mathrm{CO})]^{2+} + \mathrm{e}^{-} \rightarrow [\mathbf{2}(\mathrm{CO})]^{+};$

Figure S18. Comparison of cyclic voltammograms in the same concentration of CH_3COOH before and after the addition of [1'(CO)]BF₄ catalyst. Conditions: 1 mM sample in CH_3CN , 0.1 M *n*-Bu₄NPF₆ as the supporting electrolyte; scan rate = 100 mV/s.

Figure S19. Plots of i_{cat}/i_p vs. $[HOAc]^{1/2}$ (μ L)^{1/2} for 1 mM [**1**'(CO)]BF₄ in 0.1 *n*-NBu₄PF₆ at the scan rate of 0.1 V/s.

Figure S20. Cyclic voltammogram of 1 mM $[1'(CO)]^+$ with addition of acetic acid (35 µL) in 0.1 M *n*-NBu₄PF₆ in MeCN at a scan rate of 0.1 V.s⁻¹

Calculation of turnover frequency (TOF) $TOF = 1.94 \times v \times (i_{cat}/i_p)^2$ v = scan rate $i_{cat} = current with added acid<math>i_p = current of catalyst without acid<math>Calculation of over potential$ $E_{1/2^T} = E^{o}_{H+/H2} - (2.303RT/F) + \varepsilon_D - (RT/2F) \ln C_1/C^{o}_{H2}$ $E_{1/2^T} = theoretical half-wave potential of acetic acid reduction in MeCN$ $E^{o}_{H+/H2} = Standard reduced hydrogen potential (V)$ R = perfect gas constant (8.314 J/(mol*K))T = temperature (298.15 K)F = faraday constant (96500 C/mol) $pK_a = acid dissociation constant$ 23 / 29

 ε_D = the rate of diffusion about product with reactant (V)

 C_1 = the concentration of acetic acid (mol/L)

 C_{H_2} = the concentration of dissolved hydrogen equal to under pressure of 10⁵ Pa (mol/L)

Over-potential = $E_{1/2}^T - E_{cat/2}$

 $E_{cat/2}$ = the observed half-wave potential of acetic acid reduction with 1'(CO)BF₄.

1. ip value:

 i_p x initial volume / final volume = 32.79 μA x 5 mL / 5.035 mL = 32.56 μA

2. the ratio of i_{cat}/i_{p} .

 $i_{cat}/i_{p} = 2040.2 \ \mu\text{A} \ / \ 32.56 \ \mu\text{A} = 62.66$

3. Calculation of TOF.

 $k_{obs}(TOF) = 1.94 \text{ x} \text{ v} \text{ x} (i_{cat}/i_p)^2 = 1.94 \text{ x} 0.1 \text{ V/s} \text{ x} (62.66)^2 = 761 \text{ s}^{-1}$

Figure S21. Cyclic voltammograms for $[1'(CO)]^+$ in MeCN solution with 50 scans.

Figure S22. IR spectrum of [1'(CO)]⁺ after electrochemical catalysis.

Figure S23. Cyclic voltammograms of $[1(CO)]^+$ and $[1'(CO)]^+$ (1 mM) with various amounts of acetic acid added. 0.1 *n*-NBu₄PF₆ in MeCN was employed as the supporting electrolyte; scan rate = 100 mV[·] s⁻¹.

Figure S24. Plots of i_{cat} vs. [H⁺]. For the mixture of $[1(CO)]^+$ and $[1'(CO)]^+$: y= 13.48*x +210.0 (blue plots); for $[1'(CO)]^+$, y= 14.28*x +356.3 (black plots).

Scheme S1. Proposed Mechanism for H_2 production by $[1'(CO)]^+$.

Reference

- (1) M. Shmidt, G. Hoffmann, J. Organomet. Chem., 1977, 124, C5-C8.
- (2) C. Daniel, A. Didier, Organometallics, 1984, 3, 1094–1100.