Unsymmetric cisplatin-based Pt(IV) derivative containing 2-(2-propynyl)octanoate: a very

efficient multi-action antitumor prodrug candidate

Elisabetta Gabano,^a* Mauro Ravera,^a Ilaria Zanellato,^a Stefano Tinello,^a Andrea Gallina,^a Beatrice Rangone,^a Valentina Gandin,^b Cristina Marzano,^b Maria Grazia Bottone,^c Domenico Osella,^a

- ^{a.} Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
- ^{b.} Dipartimento di Scienze del Farmaco, Università di Padova, Via Marzolo 5, 35131 Padova, Italy.
- ^{c.} Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy.

ELECTRONIC SUPPLEMENTARY INFORMATION

Content:

- Figure S1-S3 NMR spectra of complex 1
- Figure S4-S6 NMR spectra of complex 1-¹⁵NH₃
- Figure S7 HDAC activity assay

Chromatin staining procedure

- **Figure S8** Representative pictures of Hoechst 33342 stained A2780 cells after a 4h treatment
- **Table S1**.Analysis of relative gene expression data using real-time quantitative PCR

Figure S1. Numbering scheme for the assignment of NMR signals and ¹H-NMR spectrum of 1

Figure S2. ¹³C-NMR spectrum of 1

Figure S3. ¹⁹⁵Pt-NMR spectrum of 1

Figure S4. ¹⁵N-DEPT-NMR spectrum of 1-¹⁵NH₃

Figure S5: ¹H-¹⁵N-HSQC NMR spectrum of 1-¹⁵NH₃

Figure S6: ¹H-¹⁵N-HSQC NMR spectrum of 1-¹⁵NH₃ upon reduction with cellular lysate

Figure S7. HDAC activity (fold decrease). Data are means \pm standard deviations of three experiments performed in triplicate and were compared by means of a two-tailed t-test (* p<0.05; ** p<0.01; *** p<0.001). All the Pt complexes were 1 μ M, whereas all MCFAs were 5 mM. The treatments were prolonged up to 24 h.

Chromatin staining procedure

 2×10^5 A2780 cells were seeded on NuncTM Lab-TekTM 4-chamber slides and allowed to attach for 24 h. The treatment was performed with 1 µM complex 1 or cisplatin, or 5 mM POA. After 4 h, the medium was replaced with the staining solution, consisting of 5 ng mL⁻¹ Hoechst 33342 in Earle's Balanced Salt solution (EBSS). Cells were incubated in the dark for 5 minutes, washed threefold with EBSS and immediately observed using a standard DAPI filter set (at 350/461 nm Exc/Em) of a fluorescence microscope (Zeiss Axiolab), equipped with a digital camera (Nikon digital Sights, DS-U3). Pictures were taken at 10X magnification. Figure S8 shows the results.

Figure S8. Representative pictures of Hoechst 33342 stained A2780 cells after a 4 h treatment: a) control; b) 1 μ M cisplatin; c) 1 μ M complex 1; d) 5 mM POA. Cells treated with 1 or POA clearly showed chromatin decondensation. On the contrary, treatment with cisplatin induces typical apoptosis-related chromatin condensation (i.e. pycnosis).

Table S1. Analysis of relative gene expression data using real-time quantitative PCR. The NCBI accession number is reported along with the 5'-3'

sequence of the forward and reverse primer and the expected product length.

Gene	Accession n.	Forward	Reverse	Product lenght (bp)
Cyclin D1 (CCND1)	NM_053056.2	TGAGGGACGCTTTGTCTGTC	GCCTTTGGCCTCTCGATACA	75
p21 (CDKN1A)	NG_009364	GCGACTGTGATGCGCTAATG	GAAGGTAGAGCTTGGGCAGG	141
COX-2	M90100.1	CCCTGAGCATCTACGGTTTG	CATCGCATACTCTGTTGTGTTC	107
Cyclin A2 (CCNA2)	NM_001237.4	TGGTGGTCTGTGTTCTGTGA	TGCCAGTCTTACTCATAGCTGA	136
Cyclin E (CCNE)	NM_001238	GCAGGATCCAGATGAAGAAATG	TAATCCGAGGCTTGCACGTT	173
GAPDH	NG_007073.2	ATCCCTGAGCTGAACGGGAA	GGCAGGTTTTTCTAGACGGC	99
HPRT1	NM_000194.2	TTGCTTTCCTTGGTCAGGCA	ATCCAACACTTCGTGGGGTC	85
TP53	NG_017013.2	GCCCCTCCTCAGCATCTTATC	CTCATAGGGCACCACCACAC	99
RNA18SN1	NR_145820.1	CGTCTGCCCTATCAACTTTCG	TGCCTTCCTTGGATGTGGTAG	124