Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

- Title: Photophysical properties of three coordinated copper(I) complexes bearing 1,10phenanthroline and a monodentate phosphine ligand
- Authors: Daichi Kakizoe, Michihiro Nishikawa, Yasuo Fujii, Taro Tsubomura*

Table S1. Crystallographic Data for 1-5

Table S2. Photophysical data of **3** in degassed CH₂Cl₂.

Table S3. Potential of E_{ox} and E_{red} of **3** in the cyclic voltamograms.

- Table S4. The important bond lengths and angles in the singlet optimized structure of 1 and 2.
- Table S5. The important bond lengths and angles in the singlet optimized structure of 3-5.

Table S6. Result of DFT calculations based on the singlet optimized structures.

- Fig. S1. Intermolecular interactions in the crystal of 2.
- Fig. S2. Intermolecular interactions in the crystal of 3.
- Fig. S3. Intermolecular interactions in the crystal of 4
- Fig. S4. Intermolecular interactions in the crystal of 5.
- Fig. S5. ¹H NMR spectrum of **1** in acetone- d_6 at room temperature.
- Fig. S6. ³¹P{¹H} NMR spectrum of **1** in acetone- d_6 at room temperature
- Fig. S7. ¹H NMR spectrum of **2** in CDCl₃ at room temperature.

Fig. S8. ³¹P{¹H} NMR spectrum of **2** in CDCl₃ at room temperature

- Fig. S9. ¹H NMR spectrum of **3** in acetone- d_6 at room temperature.
- Fig. S10. ³¹P{¹H} NMR spectrum of **3** in acetone- d_6 at room temperature.
- Fig. S11. ¹H NMR spectrum of **4** in CDCl₃ at room temperature.
- Fig. S12. ³¹P{¹H} NMR spectrum of **4** in CDCl₃ at room temperature.
- Fig. S13. ¹H NMR spectrum of **5** in CDCl₃ at room temperature.
- Fig. S14. ³¹P{¹H} NMR spectrum of **5** in CDCl₃ at room temperature.
- Fig. S15 (a) Absorption spectrum of **3** in CH₂Cl₂ (b) Emission spectrum of **3** in degassed CH₂Cl₂ at room temperature (c) Emission spectrum of **3** in the solid state.
- Fig. S16 Cyclic voltammogram of 0.5mM of **3** in degassed 0.1M TBAPF₆-acetone at room temperature at the scan rate of 0.2 Vs⁻¹.
- Fig. S17. (a) Absorption spectra of 4 (7.63×10^{-5} mol/L, blue), the ligand (7.65×10^{-3} mol/L, orange) and the mixture of 4 and the ligand.
- Fig. S18. The emisson decay curves of 1 (a, blue), 2 (b, red), 3(c, green), 4(d, purple) and 5(e, orange) in the solid state.
- Fig. S19. Calculated Kohn-Sham orbitals of 1 and 2 in the singlet optimized structure.
- Fig. S20. Calculated Kohn-sham orbitals of **3-5** in the singlet optimized structure.

	1		2		
Formula	C ₅₅ H ₅₂ BCl ₂	$_2CuF_4N_2P_2$	$C_{60}H_{62}BCuF_4N_2P_2$		
Volume	2462.	9(8)	2679.7(11)		
Temperature, K	123	Κ	123 K		
Cryst syst	trich	inic	triclinic		
Space group	Р-	-1	P -1		
a, Å	12.73	3(2)	11.685(3)		
b, Å	12.86	4(3)	12.569(3)		
c, Å	16.18	4(3)	20.476(5)		
$\alpha \deg$	85.46	5(5)	90.8113(18)		
β deg	69.86	51(4)	99.2685(19)		
γ deg	81.95	4(5)	114.950(2)		
Z	2		2		
μ	0.6	72	0.521		
R1, wR2	0.0413,	0.1393	0.0498, 0.1627		
	3	4	5		
Formula	$C_{33}H_{29}BCuF_4N_2P$	$C_{32}H_{35}BCuF_4N_2P$	$C_{36}H_{39}BCuF_4N_2P$		
Volume	2949.7(10)	1464(7)	3171.3(4)		
Temperature, K	123 K	123 K	123 K		
Cryst syst	monoclinic	triclinic	monoclinic		
Space group	P 1 21/c 1	P -1	P 1 21/n 1		
a, Å	11.322(2)	11.05(3)	10.3902(10)		
$b, \mathrm{\AA}$	17.180(3)	11.05(3)	22.6124(11)		
c, Å	15.165(4)	14.68(5)	13.9326(11)		
α deg	90.000(4)	106.568(7)	90		
β deg	90.000(4)	97.406(6)	104.351(3)		
γ deg	90.184(4)	116.748(8)	90		
Ζ	4	2	4		
μ	0.846	0.851	0.792		
R1, wR2	0.0993, 0.2773 0.0356, 0.1334		0.0318, 0.0769		

Table S1. Crystallographic Data for 1-5

Complex	λ_{abs}	ε	$\lambda_{ m em,\ max}$	τ	Φ
	/nm	$/10^3 M^{-1} cm^{-1}$	/nm	/µs	
3	389	0.72	610 ^a	0.084	_b

Table S2 Photophysical data of **3** in degassed CH₂Cl₂.

^a excited by 390nm ^b Not determined

Table S3 Potential of E_{ox} and E_{red} of **3** in the cyclic voltamograms.

Complex	$E_{\rm ox}{}^a$ / V	$E_{\rm red}/{ m V}$
3	0.82	_b

^{*a*} Potential of the peak of the oxidation wave. ^{*b*} Not determined.

Table S4 The important bond lengths and angles in the singlet optimized structure of 1 and 2.

Complex	N1-Cu	N2-Cu	P1-Cu	P2-Cu	N1-Cu-N2	P1-Cu-P2
	/Å	/Å	/Å	/Å	/°	/°
1	2.14561	2.14161	2.30133	2.30532	78.76136	128.50847
2	2.15082	2.13996	2.30254	2.29415	78.56522	124.15544

Table S5 The important bond lengths and angles in the singlet optimized structure of **3-5**.

Complex	N1-Cu	N2-Cu	P-Cu	N1-Cu-N2	N1-Cu-P	N2-Cu-P
	/Å	/Å	/Å	/°	/°	/°
3	2.13159	2.03719	2.22765	81.20213	125.95865	152.76765
4	2.11401	2.09034	2.25085	80.46377	129.86539	129.01831
5	2.07079	2.10425	2.22599	81.02754	131.60650	127.51854

						0		
Complex	orbital	Energy / eV	Cu ^a	NN ^b	P _{atom} ^c	$\mathbf{P}_{\mathbf{Ph}}^{d}$	Palkyl ^e	Biaryl
1	LUMO+1	-4.34	0.16	98	0.77	0.3	-	-
	LUMO	-4.41	2.18	96.03	1.06	0.73	-	-
	НОМО	-7.72	45.82	4.83	12.9	36.4	-	-
	HOMO-1	-7.9	63.2	3.73	2.79	30.2	-	-
	HOMO-2	-8.09	81.55	14.39	0.24	3.82	-	-
2	LUMO+1	-4.24	0.1	98.8	0.74	0.33	-	-
	LUMO	-4.32	2.3	95.9	1	0.8	-	-
	НОМО	-7.54	47.6	4.58	12.6	35.2	-	-
	HOMO-1	-7.82	61	3.24	0.44	35.3	-	-
	НОМО-2	-7.98	81.1	14.5	0.1	4.4	-	-
3	LUMO+1	-4.76	0.32	94.02	0	5.7	-	-
	LUMO	-5.00	2.9	94.6	0.29	2.24	-	-
	НОМО	-8.34	64.8	9.5	4.22	21.5	-	-
	HOMO-1	-8.76	50.83	8.24	5.45	35.47	-	-
	НОМО-2	-8.99	5.5	0.43	0.28	93.76	-	-
4	LUMO+1	-4.62	0.18	99.1	0.3	-	0.2	0.19
	LUMO	-4.76	2.26	96.37	0.45	-	0.27	0.64
	НОМО	-8.11	67.98	3.52	4.5	-	7.7	16.3
	HOMO-1	-8.35	76.18	15.32	1.1	-	2.9	4.4
	НОМО-2	-8.76	76.17	5.0	0.19	-	2.95	15.7
5	LUMO+1	-4.59	0.16	99.2	0.35	-	0.14	0.15
	LUMO	-4.74	2.58	96.17	0.34	-	0.23	0.68
	НОМО	-8.1	68.5	4.27	3.57	-	7.9	15.8
	HOMO-1	-8.33	74.8	14.85	1.67	-	3.79	4.87
	HOMO-2	-8.76	76.14	5.03	0.72	-	3.94	14.16

Table S6. Result of DFT calculations based on the singlet optimized structures.

^{*a*} Components moiety of the copper atom (%). ^{*b*} Components moiety of the diimine ligand (%). ^{*c*} Components moiety of the phosphorus atom (%). ^{*d*} Components moiety of the monodentate phosphine ligand except the phosphorus atom (%). ^{*e*} Components moiety of the alkyl group (%). ^{*f*} Components moiety of the biaryl unit (%)

Fig. S1. Intermolecular interactions in the crystal of **2**.

Fig. S2. Intermolecular interactions in the crystal of **3**.

Fig. S3. Intermolecular interactions in the crystal of **4**

Fig. S4. Intermolecular interactions in the crystal of **5**.

Fig. S5. ¹H NMR spectrum of **1** in acetone- d_6 at room temperature.

Fig. S6. ³¹P{¹H} NMR spectrum of **1** in acetone- d_6 at room temperature

Fig. S7. ¹H NMR spectrum of **2** in CDCl₃ at room temperature.

Fig. S8. ${}^{31}P{}^{1}H$ NMR spectrum of **2** in CDCl₃ at room temperature

Fig. S9. ¹H NMR spectrum of **3** in acetone- d_6 at room temperature.

Fig. S10. ³¹P{¹H} NMR spectrum of **3** in acetone- d_6 at room temperature.

Fig. S11. ¹H NMR spectrum of **4** in CDCl₃ at room temperature.

Fig. S12. ${}^{31}P{}^{1}H$ NMR spectrum of 4 in CDCl₃ at room temperature.

Fig. S13. ¹H NMR spectrum of **5** in $CDCl_3$ at room temperature.

Fig. S14. ${}^{31}P{}^{1}H$ NMR spectrum of **5** in CDCl₃ at room temperature.

Fig. S15 (a) Absorption spectrum of **3** in CH_2Cl_2 (b) Emission spectrum of **3** in degassed CH_2Cl_2 at room temperature. (c) Emission spectrum of **3** in the solid state.

Fig. S16 Cyclic voltammogram of 0.5mM of **3** in degassed 0.1M TBAPF₆-acetone at room temperature at the scan rate of 0.2 Vs⁻¹.

Fig. S17. (a) Absorption spectra of 4 $(7.63 \times 10^{-5} \text{ mol/L}, \text{ blue})$, the ligand $(7.65 \times 10^{-3} \text{ mol/L}, \text{ orange})$ and the mixture of 4 and the ligand in the ratio of 1:2.5(red), 1:11(green), 1:25(purple) and 1:95(magenta) in CH₂Cl₂ at room temperature. (b) Emission spectra of 4($7.63 \times 10^{-5} \text{ mol/L}$, blue), the ligand ($7.65 \times 10^{-3} \text{ mol/L}$, orange) and the mixture of 4 and the ligand in the ratio of 1:2.5(red), 1:11(green), 1:25(purple) and 1:95(magenta) in CH₂Cl₂ at room temperature. (b) Emission spectra of 4($7.63 \times 10^{-5} \text{ mol/L}$, blue), the ligand ($7.65 \times 10^{-3} \text{ mol/L}$, orange) and the mixture of 4 and the ligand in the ratio of 1:2.5(red), 1:11(green), 1:25(purple) and 1:95(magenta) in CH₂Cl₂ in degassed CH₂Cl₂ by 20 min argon bubbling.

Fig. S18. The emisson decay curves of **1** (a, blue), **2** (b, red), **3**(c, green), **4**(d, purple) and **5**(e, orange) in the solid state. The colored solid line in the figures represent the fitted curves with double exponential functions.

Fig. S19. Calculated Kohn-Sham orbitals of **1** and **2** in the singlet optimized structure. (Isosurface value, 0.02)

Fig. S20. Calculated Kohn-sham orbitals of **3-5** in the singlet optimized structure. (Isosurface value, 0.02)