Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Solvent-driven azide-induced mononuclear discrete versus one-dimensional polymeric aromatic Möbius cadmium(II) complexes of N₆ tetradentate helical ligand

Farhad Akbari Afkhami,^{a,b} Ghodrat Mahmoudi,^{*c} Atash V. Gurbanov,^{d,e} Fedor I. Zubkov,^e

Fengrui Qu,^b Arunava Gupta^{*a,b} and Damir A. Safin^{*f}

^aCenter for Material and Information technology, The University of Alabama, Box 870209, 2007 Bevil Building,

Tuscaloosa, Alabama 35487, United States. E-mail: agupta@mint.ua.edu

^bDepartment of Chemistry, The University of Alabama, Box 870336, 250 Hackberry Lane, Tuscaloosa, Alabama

35487, United States

^cDepartment of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran. E-mail: mahmoudi ghodrat@yahoo.co.uk

^dOrganic Chemistry Department, RUDN University, Miklukho-Maklaya str. 6, 117198 Moscow, Russian Federation

^eDepartment of Chemistry, Baku State University, Z. Xalilov Str. 23, AZ1148, Baku, Azerbaijan

^fInstitute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université

catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium. E-mail: damir.a.safin@gmail.com

Fig. S1. 2D and decomposed 2D fingerprint plots of observed contacts for 1 in 1·MeOH.

Figure S2. 2D and decomposed 2D fingerprint plots of observed contacts for L in 2.

	Complex 1·MeOH	Complex 2
Bond lengths		
Cd–N _{Py}	2.372(2), 2.378(2)	2.3512(14), 2.3866(14)
Cd–N _{imine}	2.480(2), 2.533(2)	2.3874(13), 2.3894(13)
Cd–N _{azide}	2.270(2), 2.327(2)	2.283(2), 2.304(2)
Cd–O _{methanol}	2.539(2)	_
Cd(L)…Cd(L)	7.941 (the shortest separation)	8.912
$Cd(L)\cdots Cd(N_{azide})_{6}$	-	5.618, 5.892
$Cd(N_{azide})_6 \cdots Cd(N_{azide})_6$	-	3.538, 5.404
Cd– $\mu_{1,3}$ -N _{azide} (–CdL)	-	2.320(2), 2.330(2)
Cd– $\mu_{1,1}$ -N _{azide}	-	2.2702(13), 2.2801(13)
Cd– $\mu_{1,1,1}$ -N _{azide}	-	2.3933(13), 2.4033(12), 2.4428(13)
Cd– $\mu_{1,3}$ -N _{azide}	_	2.304(2), 2.308(2)
Cd– $\mu_{1,1,3}$ -N _{azide}	-	2.3359(14), 2.363(2), 2.4329(13)
Bond Angles		
N _{Py} -Cd-N _{Py}	168.91(6)	163.35(5)
N _{Py} -Cd-N _{imine}	65.56(6), 66.53(6), 124.03(6), 124.08(6)	67.72(4), 67.81(5), 124.96(5), 128.45(5)
N _{Py} -Cd-N _{azide}	85.57(6), 88.26(7), 88.76(7), 93.18(6)	81.09(6), 87.08(6), 87.27(6), 90.04(6)
N_{Py} -Cd-O _{methanol}	82.04(6), 87.00(6)	-
N _{imine} -Cd-N _{imine}	168.91(6)	77.52(4)
N _{imine} -Cd-N _{azide}	77.25(6), 82.64(6), 118.28(7), 119.03(6)	88.06(6), 93.05(5), 130.95(6), 139.09(5)
N _{imine} -Cd-O _{methanol}	140.16(6), 146.41(6)	_
N_{azide} -Cd(L)- N_{azide}	157.64(7)	125.13(6)
N_{azide} -Cd-O _{methanol}	75.03(6), 83.21(6)	_
N _{azide} -Cd-N _{azide}	-	75.94(4), 77.58(4), 79.66(4), 80.01(5),
		81.28(5), 85.89(5), 86.10(6), 87.86(5),
		89.99(5), 90.01(7), 90.16(4), 90.28(5),
		90.80(6), 91.37(6), 92.50(6), 92.73(6),
		93.45(5), 93.58(5), 94.71(5), 94.88(6),
		96.70(6), 96.76(5), 103.96(5), 105.75(7),
		162.69(6), 163.23(5), 167.72(5), 169.94(6),
		174.49(5), 176.08(6)
Torsion angles		

Table S1. Selected bond lengths (Å) and angles (°) for 1·MeOH and 2

l'orsion angles		
N–C(Ph)–C(Ph)–N	75.03(6)	76.5(2)
C(Ph)–N–N–C	121.7(2), 137.72(19)	119.18(15), 125.21(16)
Ру…Ру	69.00(10)	60.47(9)
Pγ…Ph	51.00(10), 68.65(10), 68.79(10), 76.56(10)	62.21(9), 66.81(9), 67.46(9), 83.39(10)
Ph…Ph	86.46(10)	88.44(9)

Table S2. Classic hydrogen bond lengths (Å) and angles (°) for 1·MeOH

D–H…A	<i>d</i> (D–H)	<i>d</i> (H…A)	<i>d</i> (D…A)	∠(DHA)		
O(1)–H(1)…O(2) ^a	0.88(4)	1.93(4)	2.781(2)	164(3)		
O(2)–H(2)…N(4)	0.88(4)	1.94(4)	2.787(3)	161(4)		
^o Symmetry transformations used to generate equivalent atoms: $-x$, $1 - y$, $1 - z$.						

Table S3. $\pi \cdots \pi$ interaction distances (Å) and angles (°) for **1**·MeOH and **2**^{*a*}

Complex	Cg(/)	Cg(J)	d[Cg(<i>I)</i> –Cg(<i>J</i>)]	α	β	γ	slippage
1∙MeOH [♭]	Cg(1)	Cg(1) ^{#1}	3.6360(12)	0.02(10)	20.9	20.9	1.298
	Cg(2)	Cg(2) ^{#2}	3.7038(12)	0.00(10)	25.5	25.5	1.592
2 ^{<i>c</i>}	Cg(15)	Cg(16) ^{#1}	3.7242(11)	0.00(10)	12.1	12.1	0.783
	Cg(16)	Cg(15) ^{#2}	3.7003(10)	0.00(8)	14.9	14.9	0.954

^oCg(*I*)–Cg(*J*): distance between ring centroids; α : dihedral angle between planes Cg(*I*) and Cg(*J*); β : angle Cg(*I*) \rightarrow Cg(*J*) vector and normal to plane *I*; γ : angle Cg(*I*) \rightarrow Cg(*J*) vector and normal to plane *J*; slippage: distance between Cg(*I*) and perpendicular projection of Cg(*J*) on ring *I*.

^bSymmetry transformations used to generate equivalent atoms: #1 - x, 1 - y, -z; #2 1 - x, 1 - y, 1 - z. Cg(1): N(11)–C(12)–C(13)–C(14)–C(15)–C(16), Cg(2): N(30)–C(25)–C(26)–C(27)–C(28)–C(29).

^cSymmetry transformations used to generate equivalent atoms: #11 - x, 1 - y, 1 - z; #21 - x, -y, 1 - z. Cg(15): N(1)–C(2)–C(3)–C(4)–C(5)–C(6), Cg(16): N(6)–C(24)–C(25)–C(26)–C(27)–C(28).

Table S4. C–H··· π and N–N··· π interaction distances (Å) and angles (°) for **1·MeOH** and **2**^{*a*}

Complex	X—Y(/)	Cg(J)	d[Y(<i>I)</i> –Cg(<i>J</i>)]	d[X–Cg(J)]	∠ XYCg)	γ
1∙MeOH [♭]	C(13)–H(13)	Cg(4) ^{#1}	2.48	3.320(2)	147	7.97
	C(33)–H(33)	Cg(2) ^{#2}	2.76	3.655(2)	156	11.62
	C(40)-H(40)	Cg(3) ^{#3}	2.70(3)	3.604(2)	163(3)	8.84
2 ^c	C(2)–H(2)	Cg(18) ^{#1}	2.70	3.589(2)	158	14.83
	N(17)–N(18)	Cg(17) ^{#2}	3.580(2)	3.9426(17)	100.04(12)	28.11

^{*a*}Y(*I*)–Cg(*J*): distance of Y to ring centroid; X–Cg(*J*): distance of X to ring centroid; \angle (XYCg): angle X–Y–Cg; γ : angle Y(*I*) \rightarrow Cg(*J*) vector and normal to plane *J*.

^bSymmetry transformations used to generate equivalent atoms: #1 -*x*, 1 - *y*, -*z*; #2 *x*, -1 + *y*, *z*; #3 1 - *x*, -*y*, -*z*. Cg(2): N(30)–C(25)–C(26)–C(27)–C(28)–C(29), Cg(3): C(31)–C(32)–C(33)–C(34)–C(35)–C(36), Cg(4): C(37)–C(38)–C(39)–C(40)–C(41)–C(42).

^cSymmetry transformations used to generate equivalent atoms: #12 - x, 1 - y, 1 - z; #21 - x, -y, 1 - z. Cg(17): C(9)–C(10)–C(12)–C(13)–C(14); Cg(18): C(16)–C(17)–C(18)–C(19)–C(20)–C(21).