Supporting information for

The Synergistic Effect of Oxygen and Water on the Stability of the Isostructural Family of Metal-Organic Frameworks [Cr₃(BTC)₂] and [Cu₃(BTC)₂]

Zhuoming Zhang; Yong Wang; Jiangfeng Yang* and Jinping Li*

Research Institute of Special Chemicals, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan 030024, Shanxi, China

Corresponding Author. *Tel.: +86 351 6010550. E-mail: yangjiangfeng@tyut.edu.cn (J. Yang); jpli@hotmail.com (J. Li).

Figure S1. Powder X-ray diffraction patterns of samples and simulations of $Cr_3(BTC)_2$ (A) and $Cu_3(BTC)_2$ (B)

Figure S2. O_2 desorption curve of $Cr_3(BTC)_2$ at different temperature

Figure S3. PXRD patterns of the $Cr_3(BTC)_2$ (A) and $Cu_3(BTC)_2$ (B) exposure under oxygen atmosphere for different time

Figure S4. The changes in the bond length in $Cr_3(BTC)_2$ and $Cu_3(BTC)_2$ under the different environments (A. $Cr_3(BTC)_2$ under a H₂O environment; B. $Cr_3(BTC)_2$ in a mixed O₂-H₂O environment; C. $Cu_3(BTC)_2$ under a H₂O environment and D. $Cu_3(BTC)_2$ under a mixed O₂-H₂O environment).

Figure S5. XPS spectrum of Cr in Cr₃(BTC)₂ after exposing under oxygen-water atmosphere

Figure S6 SEM images of $Cr_3(BTC)_2$ (A) and $Cu_3(BTC)_2$ (B)

Figure S7. Schematic diagram of stability test

The NO.1 container is filled with the required gas. Some water is placed in container No. 2 and is in a closed state. The sample is the No. 3 container. According to the measurement results, the humidity of the No. 2 container can be guaranteed at 90% -95% RH. Thus, the sample can be in a certain gas and certain relative humidity environment.

	Activation temperature	Test temperature	Maximum pressure	Oxygen adsorption capacity
Literature ¹	433 K	298 K	1 bar	11 wt%
Our work	393 K	298 K	1 bar	14 wt%

Table S1. Comparison of key parameters in oxygen adsorption test of Cr₃(BTC)₂

Table S2. Comparison of key parameters in water adsorption test of Cr₃(BTC)₂

	Activation temperature	Test temperature	Relative humidity	Water adsorption capacity	Surface area (m ² /g)
Literature ²	393 K	298 K	80% RH	420cm ³ /g	1400
Our work	393 K	298 K	80% RH	355cm ³ /g	1067

	Activation temperature	Activation time	Test temperature	Maximum pressure (P/P ₀)	Surface area (m ² /g)
Literature ¹	433 K	48 h	77 K	1	2040 (langmuir)
Our work	393 K	16 h	77 K	1	1403 (BET)

Table S3. Comparison of key parameters in N2 adsorption test of Cr3(BTC)2

Table S4. Comparison of key parameters in N_2 adsorption test of $Cu_3(BTC)_2$ under water environment

	Activation	ration Test rature temperature	Maximum pressure (P/P ₀)	Surface area (m^2/g)		
tempe	temperature			initial	After water	loss
Literature ³	423 K	77 K	1	1270	945	26%
Literature ⁴	/	77 K	1	1340	647	48%
Our work	393 K	77 K	1	1067	922	13%

References

- L. J. Murray, M. Dinca, J. Yano, S. Chavan, S. Bordiga, C. M. Brown and J. R. Long, J. Am. Chem. Soc., 2010, 132, 7856-7857.
- 2. Y. Chen, C. Yang, X. Wang, J. Yang and J. Li, Chem. Eng. J., 2017, 313, 179-186
- 3. P. M. Schoenecker, C. G. Carson, H. Jasuja, C. J. J. Flemming and K. S. Walton, Industrial & Engineering Chemistry Research, 2012, 51, 6513-6519.
- P. Küsgens, M. Rose, I. Senkovska, H. Fröde, A. Henschel, S. Siegle and S. Kaskel, Microporous Mesoporous Mater., 2009, 120, 325-330.