Solution of the heavily stacking faulted crystal structure of the honeycomb iridate $\mathrm{H}_{3} \mathrm{LiIr}_{2} \mathrm{O}_{6}$
 - Supporting Information -

Sebastian Bette*, Tomohiro Takayama, Kentaro Kitagawa, Riku Takano, Hidenori Takagi, Robert
E. Dinnebier

Solid-State NMR-spectroscopy

${ }^{7} \mathrm{Li}$ and ${ }^{1} \mathrm{H}$ solid-state NMR measurements were performed with a standard superheterodyne pulsed spectrometer. The frequency-swept NMR spectra were composed using Fourier-step-sum technique and each Fourier-transform spectrum has been acquired by standard spin echo with pulse-pulse periods of 40$50 \mu \mathrm{~s}$. The powder samples were put into Fluorinert and shaken by motors under a field before a lowtemperature measurement to align crystal orientations along the magnetic easy axis.

Figure S 1 shows ${ }^{7} \mathrm{Li}$ - and ${ }^{1} \mathrm{H}$-NMR spectra of the partially field-oriented sample under fields 5 T and 2 T , respectively. The linewidths in the current experiment are mainly governed by spin-spin relaxation and demagnetization fields, not by the quadrupole shifts even for ${ }^{7} \mathrm{Li}$ signals. The Knight shifts are temperature dependent, mostly proportional to the bulk uniform magnetization. The data point to one crystallographically distinct Li-site and to H -sites with nearly identical chemical environment. If there were more than one crystallographic Li-site and if the H -sites exhibited vastly different chemical environments, there would be multiple distinguishable singles NMR spectra.

Figure S 1. (a) ${ }^{1} \mathrm{H}$ - and (b) ${ }^{7} \mathrm{Li}$-solid state NMR spectra of $\mathrm{H}_{3} \mathrm{LiIr}_{2} \mathrm{O}_{6}$.
Pseudosymmetries in the lattice of $\mathrm{H}_{3} \mathrm{LiIr}_{2} \mathrm{O}_{6}$

Figure S 2. Cation layer in the crystal structure of $\mathrm{H}_{3} \mathrm{LiIr}_{2} \mathrm{O}_{6}$, the unit cell edges are presented as black lines, the $a b$ plane of a pseudo-trigonal unit cell as found by O'Malley et al. ${ }^{1}$ are given as dashed grey lines, the translational symmetry is broken by the ordering of the cation sublattice, the $a b$-plane of a pseudo-hexagonal unit cell is indicated by dashed green lines, the symmetry is broken by the predominance of the $\mathbf{S} \mathbf{1}$-stacking vector (Fig. 9a in the manuscript).

