Solution of the heavily stacking faulted crystal structure of the honeycomb iridate H₃LiIr₂O₆ - Supporting Information -

Sebastian Bette*, Tomohiro Takayama, Kentaro Kitagawa, Riku Takano, Hidenori Takagi, Robert

E. Dinnebier

Solid-State NMR-spectroscopy

⁷Li and ¹H solid-state NMR measurements were performed with a standard superheterodyne pulsed spectrometer. The frequency-swept NMR spectra were composed using Fourier-step-sum technique and each Fourier-transform spectrum has been acquired by standard spin echo with pulse-pulse periods of 40-50 μ s. The powder samples were put into Fluorinert and shaken by motors under a field before a low-temperature measurement to align crystal orientations along the magnetic easy axis.

Figure S 1 shows ⁷Li- and ¹H-NMR spectra of the partially field-oriented sample under fields 5T and 2T, respectively. The linewidths in the current experiment are mainly governed by spin-spin relaxation and demagnetization fields, not by the quadrupole shifts even for ⁷Li signals. The Knight shifts are temperature dependent, mostly proportional to the bulk uniform magnetization. The data point to one crystallographically distinct Li-site and to H-sites with nearly identical chemical environment. If there were more than one crystallographic Li-site and if the H-sites exhibited vastly different chemical environments, there would be multiple distinguishable singles NMR spectra.

Figure S 1. (a) ¹H- and (b) ⁷Li-solid state NMR spectra of H₃LiIr₂O₆.

Pseudosymmetries in the lattice of $H_3LiIr_2O_6$

Figure S 2. Cation layer in the crystal structure of $H_3LiIr_2O_6$, the unit cell edges are presented as black lines, the *ab*-plane of a pseudo-trigonal unit cell as found by O'Malley et al.¹ are given as dashed grey lines, the translational symmetry is broken by the ordering of the cation sublattice, the *ab*-plane of a pseudo-hexagonal unit cell is indicated by dashed green lines, the symmetry is broken by the predominance of the **S1**-stacking vector (Fig. 9a in the manuscript).