Supporting Information

Synthesis of amine-bridged bis(phenolate) rare-earth metal aryloxides and their catalytic performances for the ring-opening polymerization of L-lactic acid *O*carboxyanhydride and L-lactide

Hao Ouyang,^a Kun Nie,^{*a,b} Dan Yuan,^a and Yingming Yao^{*,a,c}

 ^a Key Laboratory of Organic Synthesis of Jiangsu Province, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
 ^b School of Chemistry and Chemical Engineering, Taishan University, Taian 271021, People's Republic of China

^c State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China

* To whom correspondence should be addressed. Email: yaoym@suda.edu.cn (Y.

Contents

Fig. S1 ¹H NMR spectrum (CDCl₃, 25 °C) of _L-lacOCA

Fig. S2 ¹³C NMR spectrum (CDCl₃, 25 °C) of _L-lacOCA

Fig. S3 ¹H NMR spectrum (DMSO, 25 °C) of complex 1

Fig. S4 ¹³C NMR spectrum (DMSO, 25 °C) of complex 1

Fig. S5 ¹H NMR spectrum (C_6D_6 , 25 °C) of complex 2

Fig. S6 13 C NMR spectrum (C₆D₆, 25 ${}^{\circ}$ C) of complex 2

Fig. S7 ¹H NMR spectrum (C₆D₆, 25 °C) of complex 3

Fig. S8 13 C NMR spectrum (C₆D₆, 25 °C) of complex 3

Fig. S9 ¹H NMR spectrum (d₈-THF, 25 °C) of complex 5

Fig. S10 ¹³C NMR spectrum (d₈-THF, 25 °C) of complex 5

Table S1. Crystallographic data for complexes 1, 2, 3 and 5

Table S2. Selected bond lengths (Å) and bond angles (deg) for complexes 1-5

Fig. S11 Solid state structure of 2.

Fig. S12 Plot of PLA Mn(\blacksquare) and polydispersity (\blacktriangle) as a function of _L-lacOCA conversion initiated by complex 5

Fig. S13 ¹H NMR (normal) spectrum of PLLA obtained from _L-lacOCA.

Fig. S14 ¹³C NMR spectrum of PLLA obtained from _L-lacOCA

Fig. S15 ¹H NMR (homodecoupled) spectrum of PLLA obtained from _L-lacOCA

Fig. S16 DSC thermogram of poly(lactic acid)

Fig. S17 TGA thermogram of poly(lactic acid)

Fig. S2 ^{13}C NMR spectrum (CDCl_3, 25 °C) of $_L\text{-lacOCA}$

6.77 6.77 6.77 6.55 6.51 6.48 6.48 6.48 7.5.24 4.97 7.2.64 7.2.74

Fig. S3 ¹H NMR spectrum (DMSO, 25 °C) of complex 1

Fig. S4 ¹³C NMR spectrum (DMSO, 25 °C) of complex 1

Fig. S8 ^{13}C NMR spectrum (C₆D₆, 25 °C) of complex 3

Fig. S10 ^{13}C NMR spectrum (d₈-THF, 25 °C) of complex 5

Compound	1	2	3	5 ·3 THF
Formula	$\begin{array}{c} C_{74}H_{106}La_{2}N\\ {}_{4}O_{10}\end{array}$	C ₄₉ H ₇₇ N ₂ O ₅ L a	C ₆₉ H ₈₅ LaN ₂ O ₅	$\begin{array}{c} C_{180}H_{264}N_4O\\ {}_{19}Y_4 \end{array}$
fw	1489.45	913.03	1161.29	3143.58
<i>T</i> /K	293(2)	100(2)	293(2)	223(2)
Crystal system	triclinic	orthorhombic	monoclinic	triclinic
Crystal size/mm	0.60 x 0.40 x 0.20	$0.35 \times 0.30 \times 0.20$	0.75 x 0.6 x 0.4	0.80 x 0.70 x 0.30
Space group	P-1	Pnma	P 1	P-1
a/Å	12.4210(6)	21.8235(10)	15.1660(3)	15.5796(11)
$b/{ m \AA}$	12.9473(5)	20.4867(8)	33.8032(8)	18.2982(14)
$c/{ m \AA}$	13.3644(7)	10.6023(5)	24.5524(6)	18.7574(18)
α/deg	114.347(4)	90	90	75.610(15)
β/deg	109.435(5)	90	101.496(2)	70.403(14)
γ/deg	95.310(4)	90	90	66.585(13)
$V/Å^3$	1779.31(16)	4740.2(4)	12334.6(5)	4581.5(9)
Ζ	1	4	8	1
$D_{\text{calcd}}/\text{g cm}^{-3}$	1.390	1.279	1.251	1.139
μ/mm^{-1}	1.243	0.946	0.743	1.312
<i>F</i> (000)	772	1928	4880	1680
$\theta_{\rm max}/{ m deg}$	26.37	27.51	26.37	26.37
Collected	17526	42156	74083	40070
Unique reflns	7289	5581	25165	18548
Obsd reflns $[I > 2.0\sigma(I)]$	6495	4642	19002	11014
No. of variables	371	295	1471	951
GOF	1.052	1.072	1.060	1.071
R	0.0368	0.0266	0.0447	0.0804
wR	0.0875	0.0553	0.0936	0.2251
R _{int}	0.0316	0.0508	0.0414	0.0675
Largest diff. peak, hole/e Å ⁻³	1.573,- 1.712	0.875, -0.399	0.962,- 0.755	1.480, - 1.358

Table S1. Crystallographic data for complexes 1, 2, 3 and 5

Bond lengths	1	Bond lengths	2
Ln1-O1	2.465(2)	Ln1-O1	2.285(13)
Ln1-O1A	2.435(2)	Ln1-O1A	2.285(13)
Ln1-O2	2.313(2)	Ln1-O2	2.284(2)
Ln1-O3	2.289(3)	Ln1-O3	2.608(2)
Ln1-O4	2.682(3)	Ln1-O4	2.646(2)
Ln1-N1	2.848(3)	Ln1-N1	2.754(2)
Ln1-N2	2.730(3)	Ln1-N2	2.755(3)
Bond angles		Bond angles	
O2-Ln1-N1	71.20(8)	O1-Ln1-O2	106.74(4)
N2-Ln1-N1	63.97(9)	O2-Ln1-O1A	106.74(3)
O1A-Ln1-N1	106.15(8)	Ol-Lnl-OlA	145.52(7)
O3-Ln1-N1	131.12(9)	O2-Ln1-N1	140.88(8)
O3-Ln1-O1	86.79(9)	O1-Ln1-N1	74.48(4)
O3-Ln1-O2	138.69(10)	O2-Ln1-N2	76.84(8)
O3-Ln1-O1A	105.72(9)	O1-Ln1-N2	89.85(4)
O2-Ln1-O1A	97.01(8)	N1-Ln1-N2	64.04(7)
O1A-Ln1-O1	67.67(8)		

Table 52. Selected Joing lengths (11) and Joing angles (deg) for complexes 1-5 and	Table S2	2. Selected b	oond lengths	(Å) and	l bond angles	(deg)	for complexe	s 1-3 and 5
---	----------	---------------	--------------	---------	---------------	-------	--------------	-------------

Bond lengths	3	Bond lengths	5
Ln1-O1	2.301(2)	Ln1-O1	2.136(4)
Ln1-O2	2.269(2)	Ln1-O2	2.128(4)
Ln1-O3	2.270(3)	Ln1-O3	2.339(4)
Ln1-O4	2.679(3)	Ln1-O3A	2.263(4)
Ln1-O5	2.619(3)	Ln1-O4	2.365(4)
Ln1-N1	2.783(2)	Ln1-N1	2.542(5)
Ln1-N2	2.809(3)		
Bond angles		Bond angles	
O2-Ln1-N1	74.26(7)	O2-Ln1-N1	76.66(15)
N1-Ln1-N2	63.46(8)	O3-Ln1-N1	127.13(14)
O3-Ln1-N1	139.95(9)	O3A-Ln1-N1	163.70(15)
O4-Ln1-N1	77.43(8)	O4-Ln1-N1	67.47(14)
O1-Ln1-O3	111.44(10)	O2-Ln1-O3	100.19(14)
O1-Ln1-O4	84.00(8)	O2-Ln1-O3A	104.36(14)
O3-Ln1-O4	141.24(9)	O3-Ln1-O3A	69.02(15)
04-Ln1-05	68.92(9)	O4-Ln1-O3A	119.38(14)

Fig. S11 Solid state structure of complex 2 showing an atom numbering scheme. Thermal ellipsoids are drawn at 30% probability level, and hydrogen atoms are omitted for clarity.

Fig. S12 Plot of PLA Mn(\blacksquare) and polydispersity (\blacktriangle) as a function of _L-lacOCA conversion initiated by complex **5**, $[OCA]_0/[I]_0=200:1$, T = 30 °C.

5.18 5.13 5.13 5.13 5.13 5.13

Fig. S15 ¹H NMR (homodecoupled) spectrum of PLLA obtained from $_{L}$ -lacOCA

Fig. S16 DSC thermogram of poly(lactic acid)

Fig. S17 TGA thermogram of poly(lactic acid)