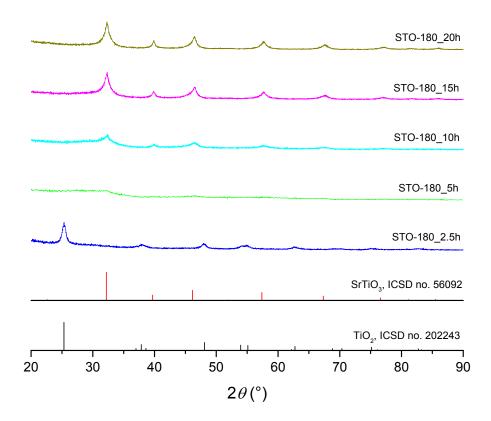
Supplementary Information:

## Solvothermal synthesis and enhanced photo-electrochemical performance

## of hierarchically structured strontium titanate micro-particles


Tao Zhang,<sup>a</sup> Thomas Doert\*<sup>a</sup> and Michael Ruck<sup>ab</sup>

<sup>a</sup> Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062

Dresden, Germany

<sup>b</sup> Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany

\* E-mail: thomas.doert@tu-dresden.de



**Fig. S1** PXRD patterns of SrTiO<sub>3</sub> samples synthesized at 180 °C with different reaction times after calcination at 450 °C in air for 2h.

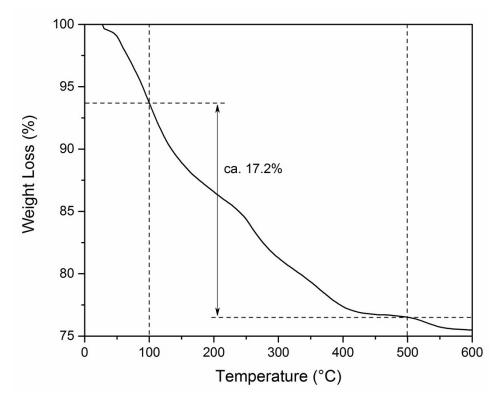
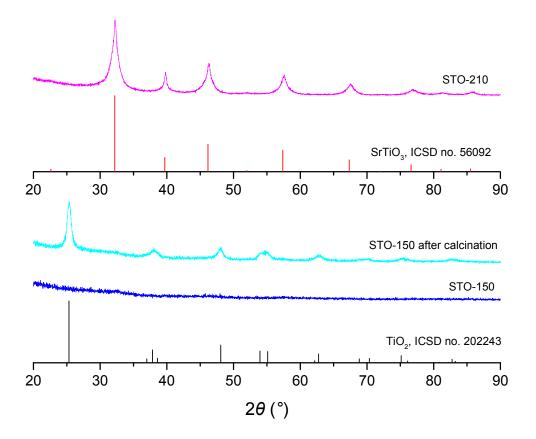




Fig. S2 The TGA curve of the SrTiO<sub>3</sub> sample synthesized at 180 °C for 2.5 h.



**Fig. S3** PXRD patterns of as-synthesized STO-150 sample, STO-210 sample, and STO-150 sample after calcination at 450 °C in air for 2h.

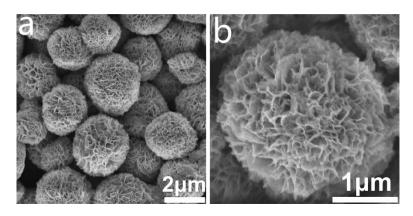
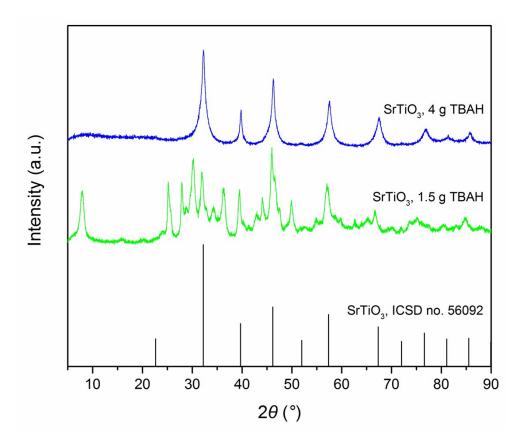




Fig. S4 SEM images for as-synthesized STO-150 samples.



**Fig. S5** PXRD patterns of as-obtained  $SrTiO_3$  samples using different amount of TBAH as reactants. The Ti-based product yields are 73.7%  $SrTiO_3$  (135.2 mg) for the sample using 1.5 g TBAH as the reactant and 77.9% (143.0 mg) for the sample using 4 g TBAH as the reactant, respectively.

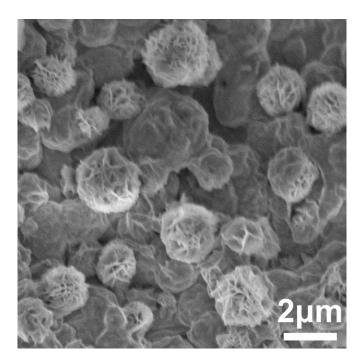



Fig. S6 SEM image of as-obtained SrTiO<sub>3</sub> samples using 1.5 g TBAH as the reactant.

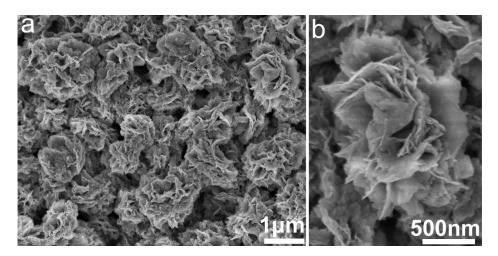
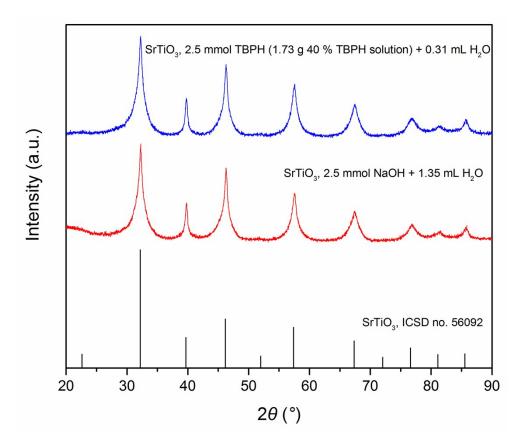
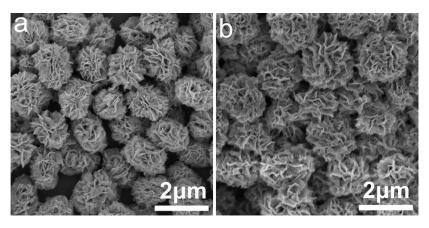





Fig. S7 SEM images of as-obtained SrTiO<sub>3</sub> samples using 4 g TBAH as the reactant.



**Fig. S8** PXRD patterns of as-obtained  $SrTiO_3$  samples using NaOH and tetrabutylphosphonium hydroxide (TBPH) as reactants. The Ti-based yields are 73.4% (134.7 mg) for the sample using NaOH as the reactant and 80.9% (148.5 mg) for the sample using TBPH as the reactant, respectively.



**Fig. S9** SEM image of as-obtained SrTiO<sub>3</sub> samples using NaOH (a) and TBPH (b) as the reactants, respectively.

## Electrophoretic preparation of the Ti/SrTiO<sub>3</sub> photoelectrode

The SrTiO<sub>3</sub> photoelectrode was prepared by an electrophoretic deposition method. Typically, 50 mg of ground SrTiO<sub>3</sub> powder were dispersed in 100 mL isopropanol. A small amount of  $Mg(NO_3)_2 \cdot 6H_2O$  (10<sup>-3</sup> M;  $\approx 25$  mg) was added into the suspension in order to generate positive surfaces charges on the perovskite (by absorption of Mg<sup>2+</sup> ions) and to facilitate electro-migration. The suspension was continuously stirred for one hour and sonicated for 30 minutes at room temperature. For the electrophoretic deposition, the titanium foil was used as working electrode and a platinum foil was used as the counter electrode. A constant working voltage was set to 50 V and the electrophoretic deposition process was performed for 10 minutes. The final SrTiO<sub>3</sub>-coated titanium foil was washed with distilled water to remove residual isopropanol and Mg(NO<sub>3</sub>)<sub>2</sub> salt and dried at room temperature in the air before using.