ELECTRONIC SUPPLEMENTARY INFORMATION Mono- and Binuclear Chiral N,N,O-Scorpionate Zinc Alkyls as Efficient Initiators for the ROP of *rac*-Lactide.

Antonio Otero,^{*,a} Juan Fernández-Baeza,^{*,a} Luis F. Sánchez-Barba,^{*,b} Sonia Sobrino,^a Andrés Garcés,^b Agustín Lara-Sánchez,^a and Ana M. Rodríguez^a

^aProf. Dr. Antonio Otero, Dr. Juan Fernández-Baeza, Dña. Sonia Sobrino Dr Agustín Lara-Sánchez, Dr. Ana M. Rodríguez.

Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain.

E-mail: antonio.otero@uclm.es; juan.fbaeza@uclm.es;

^bDr. Luis F. Sánchez-Barba, Dr. Andrés Garcés.

Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, Móstoles-28933-Madrid, Spain.

E-mail: luisfernando.sanchezbarba@urjc.es

Table of Contents

1)	NMR characterization for complexes 1-3, 4, 7, 10, 13, 15 and 17:					
	Figure S1-S9. ¹ H and ¹³ C{ ¹ H} NMR spectraS4					
2)	Dynamic behavior studies:					
	Figure S10. ¹ H NMR spectrum for complex 13 at 25 and 60°C in thf-					
	<i>d</i> ₈					
	Figure S11. ¹ H NMR spectrum for complex 13 and ZnMe ₂ at 25°C in thf-					
	<i>d</i> ₈					
3)	Ring-opening polymerization of <i>rac</i> -lactide details:					
	Figure S12. GPC trace corresponding to a poly(<i>rac</i> -lactide) sample					
	Figure S13. Plot of PLA M_n and molecular weight distribution values (PDI) as a function of					
	monomer conversion (%) employing 7					
	Figure S14 Selected area of MALDI ToF mass spectra of poly(use lastide) synthesized using					
	initiators 7 and 9					
	initiators / and 8					
	Figure S15. Pseudo-first-order kinetic plots for <i>rac</i> -LA polymerizations employing 7S19					
	Figure S16. Plots of ln k_{app} versus ln [catalyst] ₀ for the polymerization of <i>rac</i> -LA employing					
	7					
	Table S1. Rate constants dependence on the initial catalyst concentration for 7S21 Figure S17. ¹ H NMR spectrum of poly(<i>rac</i> -lactide) showing the chain-end <i>termini</i> S22					
	Figure S18. ¹ H NMR spectrum of the homodecoupled CH resonance of poly(rac-lactide)					
	prepared from catalyst 6					
4)	X-ray diffraction experimental details:					
	Table S2. Crystal data and structure refinement for 4 and 5					

REVISED MANUSCRIPT

5)	References	S2	25
----	------------	----	----

Figure S1a. ¹H NMR spectrum of compound bpzampeH (1).

Figure S1b. ${}^{13}C{}^{1}H$ NMR spectrum of compound bpzampeH (1).

Figure S2a. ¹H NMR spectrum of compound bpzaepeH (2).

Figure S2b. ${}^{13}C{}^{1}H$ NMR spectrum of compound bpzaepeH (2).

Figure S3a. ¹H NMR spectrum of compound bpzimeH (3).

Figure S3b. ${}^{13}C{}^{1}H$ NMR spectrum of compound bpzimeH (3).

Figure S4a. ¹H NMR spectrum of complex [Zn(Me)(bpzampe)] (4).

Figure S4b. ¹³C{¹H} NMR spectrum of complex [Zn(Me)(bpzampe)] (4).

Figure S5a. ¹H NMR spectrum of complex [Zn(Me)(bpzaepe)] (7).

Figure S5b. ${}^{13}C{}^{1}H$ NMR spectrum of complex [Zn(Me)(bpzaepe)] (7).

Figure S6a. ¹H NMR spectrum of complex [Zn(Me)(bpzime)] (10).

Figure S6b. ¹³C{¹H} NMR spectrum of complex [Zn(Me)(bpzime)] (10).

Figure S7a. ¹H NMR spectrum of complex [Zn(Me)(bpzampe)Zn(Me)₂] (13).

Figure S7b. ${}^{13}C{}^{1}H$ NMR spectrum of complex [Zn(Me)(bpzampe)Zn(Me)₂] (13).

Figure S8a. ¹H NMR spectrum of complex [Zn(Me)(bpzaepe)Zn(Me)₂] (15).

Figure S8b. ${}^{13}C{}^{1}H$ NMR spectrum of complex [Zn(Me)(bpzaepe)Zn(Me)₂] (15).

Figure S9a. ¹H NMR spectrum of complex [Zn(Me)(bpzime)Zn(Me)₂] (17).

Figure S9b. ${}^{13}C{}^{1}H$ NMR spectrum of complex [Zn(Me)(bpzime)Zn(Me)₂] (17).

REVISED MANUSCRIPT

(a)

(b)

Figure S10. ¹H NMR spectra (thf- d_8) in the region of the methyl groups for complex [Zn(Me)(bpzampe)Zn(Me)₂] (13) at 25°C (*a*) and 60°C (*b*).

Figure S11. ¹H NMR spectra (thf- d_8 , 25°C) for complex [Zn(Me)(bpzampe)Zn(Me)₂] (**13**) (*a*) and commercial ZnMe₂ in toluene 2M (*b*).

Figure S12. GPC trace corresponding to a poly(*rac*-lactide) prepared from catalyst [Zn(Me)(bpzampe)Zn(Me)₂] (13) (Table 2, entry 20).

Figure S13. Plot of PLA M_n and molecular weight distribution values (PDI) as a function of monomer conversion (%) for the polymerization of *rac*-LA initiated by [Zn(Me)(bpzaepe)] (7); [*rac*-LA]₀/[Zn]₀ = 100, tetrahydrofuran, 20 °C (Table 2, entries 6–10, R² = 0.993).

Figure S14a. Selected area of the MALDI-ToF mass spectrum of a PLA sample obtained on using initiator [Zn(Me)(bpzaepe)] (7) with $[rac-LA]_0/[Zn]_0 = 20$, 85% conversion; theoretical molecular weights calculated according to the equation: $M_n = (DP_n \times M_{wLA}) + M_{wMeH} + M_{wNa}$, where DP_n is the degree of polymerization, $M_{wLA} = 144.13 \text{ g} \cdot \text{mol}^{-1}$, $M_{wMeH} = 16.04 \text{ g} \cdot \text{mol}^{-1}$ and $M_{wNa} = 23.09 \text{ g} \cdot \text{mol}^{-1}$.

Figure S14b. Selected area of the MALDI-ToF mass spectrum of a PLA sample obtained on using initiator [Zn(Et)(bpzaepe)] (8) with [*rac*-LA]₀/[Zn]₀ = 30, 73% conversion; theoretical molecular weights calculated according to the equation: $M_n = (DP_n \times M_{wLA}) + M_{wEtH} + M_{wNa}$, where DP_n is the degree of polymerization, $M_{wLA} = 144.13 \text{ g} \cdot \text{mol}^{-1}$, $M_{wEtH} = 30.04 \text{ g} \cdot \text{mol}^{-1}$ and $M_{wNa} = 23.09 \text{ g} \cdot \text{mol}^{-1}$.

The distribution in the spectrum indicates the existence of a single family of polymer chains capped by – CH(CH₃)OH, and (CH₃–OC(O)– and (CH₃–CH₂–OC(O)– *termini* for **7** and **8**, respectively, corresponding to oligomers of formula $H(OCHMeCO)_{2n}(CH_3)\cdot Na^+$ (n = 9 to 17) and $H(OCHMeCO)_{2n}(CH_2-CH_3)\cdot Na^+$ (n = 7 to 22), respectively, with consecutive peaks separated by increments of 144 Da (Figure S13a and S13b, respectively). Moreover, neither intermolecular ester-exchange (transesterification) reactions nor cyclic oligomers were detected.

Figure S15. Pseudo-first-order kinetic plots for the polymerization of *rac*-LA in tetrahydrofuran at 20°C employing [Zn(Me)(bpzaepe)] (7) as catalyst ([*rac*-LA]₀ = 0.80 M).

In all cases, the linearity of the semi-logarithmic plot of $\ln ([rac-LA]_0/[rac-LA]_t)$ versus reaction time for catalyst 7 at 20°C, employing different initial catalyst concentrations, shows that the propagations were first order with respect to *rac*-LA monomer (Figure S14) (square correlation coefficients ≥ 0.97).

Figure S16. Plot of ln k_{app} versus ln [catalyst]₀ for the polymerization of *rac*-LA employing initiator [Zn(Me)(bpzaepe)] (7) in tetrahydrofuran at 20°C, with [*rac*-LA]₀ = 0.75 mol/L.

The kinetic dependence on the catalyst concentration (*n*) and the propagation rate constant (k_p) confirms that the reaction is also first order in catalysts 7 at 20°C (Figure S15). These values prove that the polymerization of *rac*-LA mediated by this initiator obeys an overall second-order rate kinetic law of the form:

$$-d[rac-LA]/dt = k_p[catalyst]^1[rac-LA]^1$$

 Table S1. Rate constants dependence on the initial concentration of [Zn(Me)(bpzaepe)] (7) for *rac*-LA polymerization at 20°C.

$[catalyst]_0 \times 10^3 (M)$	$k_{\rm app} imes 10^5 ({ m s}^{-1})$	$k_{\rm p} imes 10^3 ({ m M}^{-1} \cdot { m s}^{-1})$	n
8	5.5 ± 0.3	8.5 ± 0.6	1.04 ± 0.03
12	11.1 ± 0.2		
18	16.7 ± 0.7		
20	23.7 ± 0.8		

REVISED MANUSCRIPT

Figure S17. ¹H NMR spectrum (400 MHz, 298 K, CDCl₃) of PLA prepared by the polymerization of *rac*-LA initiated by [Zn(Me)(bpzaepe)] (7) at 67% of conversion showing all resonances and assignments, including the chain *termini* ([*rac*-LA]₀/[Zn]₀ = 15, tetrahydrofuran, 20 °C).

Figure S18. ¹H NMR spectrum (400 MHz, 298 K, CDCl₃) of the homodecoupled C*H* resonance of poly(*rac*-lactide) prepared employing [Zn(Me)(bpzaepe)] (7) in tetrahydrofuran at 0°C for 24 h (Table 2, entry 5). The tacticity of the polymer was assigned using the methine signals with homonuclear decoupling, as described by Hillmyer and co-workers.¹

	4	5
Empirical formula	$\mathrm{C}_{21}\mathrm{H}_{29}\mathrm{N}_{5}\mathrm{O}\mathrm{Zn}$	$C_{22} H_{31} N_5 O Zn$
Formula weight	432.86	446.89
Temperature (K)	240(2)	240(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	P 2 ₁ /c	P 2 ₁ /c
a(Å)	13.201(3)	12.951(3)
b(Å)	15.952(3)	16.222(4)
c(Å)	10.310(2)	10.789(3)
β(°)	91.966(3)	92.045(4)
Volume(Å ³)	2169.9(7)	2265.1(10)
Z	4	4
Density (calculated) (g/cm ³)	1.325	1.310
Absorption coefficient (mm ⁻¹)	1.152	1.106
F(000)	912	944
Crystal size (mm ³)	0.28 x 0.18 x 0.12	0.21 x 0.15 x 0.09
Index ranges	$-15 \le h \le 15$ $-18 \le k \le 17$ $-12 \le 1 \le 12$	$-15 \le h \le 15$ $-14 \le k \le 19$ $-12 \le l \le 12$
Reflections collected	14175	13960
Independent reflections	3822 [R(int) = 0.0533]	3981 [R(int) = 0.1269]
Data / restraints / parameters	3822 / 0 / 260	3981 / 0 / 262
Goodness-of-fit on F ²	1.020	0.959
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0419, wR2 = 0.0933	R1 = 0.0583, $wR2 = 0.1201$
Largest diff. peak / hole, e.Å-3	0.258 / -0.310	0.339 / -0.345

 Table S2. Crystal data and structure refinement for 4 and 5.

 $a \overline{R = \Sigma ||F_o| - |F_c|/\Sigma |F_o|} \ b wR = \{ \Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2 \}^{1/2} \ c \text{ GOF} = \{ \Sigma [w ((F_o^2 - F_c^2)^2) / (n-p) \}^{1/2}, \text{ where } n = n \text{ umber of reflections and } p = \text{ total number of parameters refined.}$

References

 M. T. Zell, B. E. Padden, A. J. Paterick, K. A. M. Thakur, R. T. Kean, M. A. Hillmyer, E. J. Munson, *Macromolecules*, 2002, 35, 7700–7707.