Supporting Information

Catalytic fixation of atmospheric carbon dioxide by copper(II) complexes of bidentate ligands

Sethuraman Muthuramalingam,^a Themmila Khamrang,^b Marappan Velusamy,^{*,b} and Ramasamy Mayilmurugan^{*,a}

^aBioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India.
Email; <u>mayilmurugan.chem@mkuniversity.org</u>
^bDepartment of Chemistry, North Eastern Hill University, Shillong 793022, India

Figure S1. UV-vis spectral changes for the reaction of complex **2** (1 ×10⁻³ M) with one equivalent Et₃N in CH₃CN at 25 °C.

Figure S2. UV-vis spectral changes for the reaction of complex **3** (1×10^{-3} M) with one equivalent of Et₃N in CH₃CN at 25 °C.

Figure S3. UV-vis spectral changes for the reaction of complex 4 (1 ×10⁻³ M) with one equivalent of Et_3N in CH_3CN at 25 °C.

Figure S4. UV-vis spectral changes for the reaction of complex **5** (1 ×10⁻³ M) with one equivalent of Et₃N in CH₃CN at 25 °C.

Figure S5. Uv-vis spectral change for the reaction of complex 1 (5 ×10⁻³ M) with CO₂ in the presence of one equivalent Et₃N in CH₃CN at 25 °C.

Figure S6. Uv-vis spectral change for the reaction of copper(II) complexes 2 (A), 3 (B), 4 (C) and 5 (D) $(1 \times 10^{-3} \text{ M})$ with CO₂ in the presence of one equivalent Et₃N in CH₃CN at 25 °C.

Figure S7. Uv-vis spectra for the regeneration of the complexes 2 (A), 3 (B), 4 (C) and 5 (D) (1×10^{-3} M) in the presence of one equivalent H⁺ (HCl).

Figure S8. Uv-vis spectra of the reaction of $[Cu(bpy)_2](ClO_4)_2$ (1 ×10⁻³ M) (A) and $[Cu(phen)_2](ClO_4)_2$ (B) (1 ×10⁻³ M) with CO₂ in the presence of Et₃N at 25 °C.

Figure S9. Absorption spectral changes during recycling 1 (1×10^{-3} M) (left) and 2 (1×10^{-3} M) (right) at 25 °C.

spectra in the recyclability test of the catalyst **1** (5 ×10⁻³ M) (left) and **2** (5 ×10⁻³ M) (right) in acetonitrile at 25 °C.

Figure S11. ESI-MS spectra of complex 1 (top) and regeneration of the catalyst 1 (bottom) in acetonitrile solution.

Figure S12. ESI-MS spectra of complex **2** (top) and regeneration of the catalyst **2** (bottom) in acetonitrile solution.

Figure S13. ESI-MS spectra of complex 3 (top) and regeneration of the catalyst 3 (bottom) in acetonitrile solution.

Figure S14. ESI-MS spectra of complex 4 (top) and regeneration of the catalyst 4 (bottom) in acetonitrile solution.

Figure S15. ESI-MS spectra of complex **5** (top) and regeneration of the catalyst **5** (bottom) in acetonitrile solution.