Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information for

Urea-glass Preparation of Titanium Niobium Nitrides and Subsequent Oxidation to Photoactive Titanium Niobium Oxynitrides

James J. Brancho, Aaron D. Proctor, Shobhana Panuganti, and Bart M. Bartlett*

Department of Chemistry University of Michigan 930 N. University Avenue Ann Arbor, MI 48109-1055, United States Email: bartmb@umich.edu

Table of Contents

Figure S1. Scanning electron micrographs of titanium niobium nitrides	S2
Figure S2. Scanning electron micrographs of oxidized titanium niobium nitrides	S2
Table S1. Metal contents of titanium niobium nitrides	S2
Figure S3. Transmission electron micrograph of TiNbON-0.05	S3
Figure S4. Langmuir-Hinshelwood line fits from MB concentration data	S3
Table S2. First-order Langmuir-Hinshelwood rate constants for MB degradation	S3
Figure S5. X-ray photoelectron spectra for titanium niobium oxynitrides	S4

Figure S1. Scanning electron micrographs of $Ti_{1-x}Nb_xN$ prepared by the urea-glass route: a) x = 0, b) x = 0.05, c) x = 0.15, d) x = 0.25, e) x = 0.30. Each sample shares a common scale bar.

Figure S2. Scanning electron micrographs of $Ti_{1-x}Nb_xN$ prepared by the urea-glass route: a) x = 0, b) x = 0.05, c) x = 0.15, d) x = 0.25, e) x = 0.30. Each sample shares a common scale bar.

Table 51. Wetar contents for Theat out round by energy dispersive X hay specifoscopy.						
x	0	0.05	0.15	0.25	0.30	
Found Ti:Nb	Ti ₁ Nb ₀	Ti0.92Nb0.08	Ti0.82Nb0.18	Ti0.77Nb0.23	Ti0.69Nb0.31	

Table S1. Metal contents for Ti_{1-x}Nb_xN found by energy dispersive X-ray spectroscopy.

Figure S3. Transmission electron micrograph for TiNbON-0.05.

Figure S4. Linear fits for first-order Langmuir-Hinshelwood kinetics for a) full-spectrum and b) λ ≥ 400 nm methylene blue degradation measurements. The slope of the fit line is the rate constant for the reaction. Black squares: TiNbON-0; red circles: TiNbON-0.05; blue uptriangles: TiNbON-0.15; green down-triangles: TiNbON-0.25; purple stars: TiNbON-0.30.

 Table S2. First-order Langmuir-Hinshelwood rate constants for methylene blue degradation over TiNbON-X compounds.

	TiNbON-0	TiNbON-	TiNbON-	TiNbON-	TiNbON-
		0.05	0.15	0.25	0.30
$k_{ m LH} ({ m h}^{-1})$	0.568 ± 0.033	0.676 ± 0.064	0.615 ± 0.090	0.490 ± 0.050	0.467 ± 0.033
full spectrum					
$k_{ m LH} ({ m h}^{-1})$	0.393 ± 0.026	0.496 ± 0.118	0.435 ± 0.078	0.257 ± 0.025	0.296 ± 0.029
$\lambda \ge 400 \text{ nm}$					

(right) for TiNbON compounds. Nb content decreases from top to bottom (a), TiNbON-0; b), TiNbON-0.05; c) TiNbON-0.15; d), TiNbON-0.25; e), TiNbON-0.30).