Supporting information

Fabrication of Mesoporous $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ Perovskite as a Low-Cost and Efficient Catalyst for Oxygen Reduction

Xiangzhi Cui,^a Ryan O'Hayre,^b Svitlana Pylypenko,^b Linlin Zhang,^a Liming Zeng,^a

Xiaohua Zhang,^a Zile Hua,^a Hangrong Chen^a and Jianlin Shi*^a

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences. 1295 Dingxi Road, Shanghai 200050, China.

^b Department of Metallurgical & Materials Engineering, Colorado School of Mines,
1500 Illinois Street, Golden, Colorado 80401, USA.

* Prof. Dr. Jianlin Shi, jlshi@mail.sic.ac.cn

Tables

Sample	Element	Wt. %	At. %	Sample	Element	Wt. %	At. %
	Ba	41.70	20.51		Ba	40.58	20.74
	Sr	22.59	17.42		Sr	24.55	19.67
m-BSCF	Co	23.23	26.62	CS-BSCF	Co	23.98	28.56
	Fe	5.72	6.92		Fe	5.37	6.75
	0	6.76	28.53		0	5.54	24.29
	Total	100.00	100.00		Total	100.00	100.00

Table S1. Elements quantification of samples by EDX.

 Table S2. Elements quantification of samples by ICP-OES.

Sample	Element	Wt. %	At. %	Sample	Element	Wt. %	At. %
	Ba	45.5	0.33		Ba	42.3	0.31
	Sr	27.8	0.32		Sr	26.7	0.31
m-BSCF	Со	28.4	0.48	CS-BSCF	Со	23.8	0.40
	Fe	7.29	0.13		Fe	6.89	0.12

Sample	S _{BET} ^[a]	$D_{\rm BJH}^{[b]}$	V _{BJH} [c]	ECSA ^[d]	BET _{cur.} [e]
	$/m^2g^{-1}$	/nm	/cm ³ g ⁻¹	$/m^2 g_{cat.}^{-1}$	$/mA m_{cat.}^{-2}$
CS	560	-	-	-	-
KIT-6	916	7.8	1.2	-	
CS-BSCF	13	-	-	7.5	390
m-BSCF	81	11.7	0.37	24	98.9
SG-BSCF	2.5	-	-	6.7	1470
20wt%Pt/C	185			-	

 Table S3. Pore structural parameters and the electron-transfer number of prepared

 composites

^[a] BET surface area

^[b] BJH desorption average pore diameter

^[c] BJH desorption cumulative pore volume.

^[d] electrochemically active surface area (ECSA), which is calculated by formula:

$$ECSA = \frac{S_{\rm H}/V}{0.21(mC.cm^{-2}) \cdot M_{\rm catal}}$$

 $S_{\rm H}$: ORR peak area; V: scan rate; $mC.cm^{-2}$: Milli Cullen.per square centimeter;

 M_{catal} : quality of catalyst with the unit of gram.

^[e] ORR peak current versus BET surface area, which is calculated by formula:

$$BET_{cur.} = \frac{I_{ORR}}{S_{BET} \times 0.0686}$$

 I_{ORR} : ORR peak current (mA); S_{BET} : BET surface area of catalyst (m² g⁻¹); 0.0686: the quality of catalyst transferred to the working electrode (mg).

Sample	$V_{\rm O}^{[a]}$	$J_{ m L}{}^{[b]\!/}$	$J_{\mathrm{K}}^{[\mathrm{c}]/}$	Is ^[d]	Im ^[e]	n ^[f]
	/V	mAcm _{disk} ⁻²	mAcm _{disk} ⁻²	$/\mu A \text{ cm}^{-2}_{\text{cat.}}$	$/A g^{-1}_{cat.}$	
CS-BSCF	-0.25	4.6	4.2	246.7	32.1	2.7-3.2
m-BSCF	-0.05	5.2	5.0	44.4	35.7	3.6-3.8
SG-BSCF	-0.28	3.6	3.9	446.4	24.3	2.9-3.3
20wt%Pt/C	0.05	4.8	5.3	17.9	36.4	3.8-3.9

Table S4. Electrochemical parameters of ORR performance for the prepared samples.

[a] onset potential vs Ag/AgCl

^[b] limited current density

^[c] kinetic current density extrapolated from the intercept of the linearly fitted K-L

plots at -0.55 V (versus Ag/AgCl)

- ^[d] Specific ORR activity (*Is*)
- ^[e] Mass ORR activity (*I*m)

^[f] Electron transfer number.

Catalyst	Loading	Electrolyte	Eonset vs.	Limited Current	n	Ref.
	mg _{cat} . cm _{disk} ⁻²		RHE/V	/ mAcm _{disk} ⁻²		
m-BSCF	0.15	0.1 M KOH	0.925	5.2	3.5-3.8	This work
BSCF	0.64	0.1 M KOH	0.75	5.0	3.5-3.6	[1]
O ₂ -BSCF	0.64	0.1 M KOH	0.75	6.0	3.7-3.8	[1]
BSCF-NC	0.40	0.1 M KOH	0.93	5.2	3.9	[2]
BSCF/AB	0.26	0.1 M KOH	0.80	4.0	3.5-3.7	[3]

Table S5. Comparison of ORR performance for BSCF catalysts in alkaline medium.

Reference:

- [1] Jae-Il Jung, Hu Young Jeong, Min Gyu Kim, Gyutae Nam, Joohyuk Park, and Jaephil Cho, Fabrication of Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ} Catalysts with Enhanced Electrochemical Performance by Removing an Inherent Heterogeneous Surface Film Layer, *Adv. Mater.*, **2015**, *27*, 266–271.
- [2] Jian Wang, Hong Zhao, Yang Gao, Dengjie Chen, Chi Chen, Mattia Saccoccio, Francesco Ciucci, Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ} on N-doped mesoporous carbon derived from organic waste as a bi-functional oxygen catalyst. *Int. J. Hydrogen Energy*, **2016**, 41, 10744-10754.
- [3] Emiliana Fabbri, Rhiyaad Mohamed, Pieter Levecque, Olaf Conrad, Rudiger Kotz, Thomas J. Schmidt, Composite Electrode Boosts the Activity of Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ} Perovskite and Carbon toward Oxygen Reduction in Alkaline Media. ACS Catal., 2014, 4, 1061–1070.

Figures

Fig. S1 SEM image of the sample CS-BSCF (A) and the corresponding element mappings (A1-A5).

Fig. S2 TEM images of sample CS-BSCF (A, B) and SG-BSCF (D, E); (C) and (F) are the corresponding EDX spectra of CS-BSCF and SG-BSCF, respectively.

Fig. S3 HR-TEM images of m-BSCF, (A) as prepared sample, (B) after cycled for 100th in oxygen saturated 0.1 M KOH.

Fig. S4 (A) LSV curves of sample CS-BSCF in oxygen saturated 0.1 M KOH, (B) Electron transfer number of CS-BSCF during the oxygen reduction process in the same electrolyte and the corresponding I*d* and I*r* curves in the inset.

Fig. S5 (A) LSV curves of sample SG-BSCF in oxygen saturated 0.1 M KOH, (B) Electron transfer number of CS-BSCF during the oxygen reduction process in the same electrolyte and the corresponding I*d* and I*r* curves in the inset.

Fig. S6 (A) LSV curves of reference sample 20wt%Pt/C in oxygen saturated 0.1 M KOH, (B) Electron transfer number of 20wt%Pt/C during the oxygen reduction process in the same electrolyte and the corresponding I*d* and I*r* curves in the inset.

Fig. S7 Tafel plots of the prepared samples.

Fig. S8 Methanol tolerance property of CS-BSCF in electrolyte of 0.1M KOH and 3M CH₃OH.

Fig. S9 Methanol tolerance property of SG-BSCF in electrolyte of 0.1M KOH and 3M CH₃OH.