Supporting Information

Synthesis, Characterization and Magnetic Properties of Head-to-Head Stacked Vanadocenes

Sarah Puhl,^a Torben Steenbock,^a Reentje Harms,^a Carmen Herrmann,^a and Jürgen Heck^{*a}

^aInstitute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany herrmann@chemie.uni-hamburg.de; heck@chemie.uni-hamburg.de

Broken-Symmetry structure of 3

 $E_{\rm tot} = -3046.31948234331$ a.u.

V	5.87133800	4.54895000	1.56754100
С	8.04164900	5.19458500	1.97157700
С	7.55310900	4.46394200	3.09336500
С	7.25834600	3.14105900	2.67788200
С	7.54263300	3.04278500	1.29148600
С	8.01163200	4.30732300	0.85259700
Н	8.33513200	4.55313000	-0.14869500
С	3.83468700	5.16533800	2.37243400
С	4.27841400	6.17532000	1.47928200
Н	4.49878900	7.20047400	1.73896600
С	4.39186000	5.59839600	0.18684800
Н	4.69945100	6.11059300	-0.71332900
С	4.01860700	4.23150500	0.28158800
С	3.67401600	3.96402000	1.63237000
С	8.43583700	6.61946400	1.92946400
Н	7.43702800	4.85503400	4.09287600
Н	6.87669900	2.35045400	3.30719500
Н	7.42472700	2.16219600	0.67678200
Н	3.65410200	5.28861300	3.43033600
Н	3.99992000	3.52059800	-0.53169800
Н	3.34883000	3.01276200	2.02791900
С	7.95866600	7.37241100	0.86897800
С	9.19044100	7.27682600	2.96388600
Н	7.39159900	6.86402500	0.09627400
С	8.09904300	8.76650000	0.80685300
С	9.94506800	6.61942500	3.99832400
С	9.19045300	8.71629200	2.96391000
Н	7.70515000	9.30981300	-0.04453800

С	8.65657700	9.43149500	1.86638000
С	10.42224600	7.37241100	5.05885000
С	10.33925800	5.19460800	3.95622600
С	9.72432000	9.43149100	4.06142900
H	8.69867700	10.51526900	1.88626200
Н	10.98928700	6.86405200	5.83149800
С	10.28182500	8.76650600	5.12088900
V	12.50956900	4.54892900	4.36026900
С	10.82779700	4.46396200	2.83436900
С	10.36923000	4.30734300	5.07522900
Н	9.68220200	10.51528300	4.04152400
H	10.67575200	9.30982500	5.97232700
С	11.12254900	3.14106900	3.24991100
С	10.83827300	3.04274700	4.63631100
Н	10.04576100	4.55311300	6.07646600
С	14.54620100	5.16534000	3.55537600
С	14.10248500	6.17532700	4.44851700
H	13.88211900	7.20046100	4.18884800
С	13.98905000	5.59839100	5.74094800
H	13.68146800	6.11059200	6.64113800
С	14.36228800	4.23148700	5.64626100
С	14.70690200	3.96398600	4.29538100
Н	10.94389700	4.85503000	1.83493600
H	11.50420800	2.35046900	2.62059600
Н	10.95615000	2.16220700	5.25098200
H	14.72678900	5.28861700	2.49745300
Н	14.38099600	3.52060600	6.45948300
Н	15.03205700	3.01278000	3.89987300

Synthesis of $bis(\mu_2$ -chlorido) $bis((\eta^5$ -cyclopentadienyl)tetrahydrofuranvanadium(II)) (2)^[1]

A mixture of potassium (0.67 g, 17 mmol) and naphthalene (2.2 g, 17 mmol) in thf (35 mL) was stirred at -15 °C for 4.5 h. Solid vanadocene (1.4 g, 7.8 mmol) was added to the green solution and the reaction mixture was allowed to stir 17 h at room temperature. The yellow solution was cooled to -78 °C for 8.5 h leading to precipitation of potassiumcyclopentadienide which was removed *via* filtration. 1,2-Dichloroethane (0.31 mL, 3.9 mmol) was added to the filtrate at 0 °C and the mixture was stirred for 30 min. The solvent was removed under reduced pressure and the red residue was extracted with *n*-hexane (40 mL). Addition of thf (1.4 mL, 21 mmol) and 1,2-dichloroethane (0.31 mL, 3.9 mmol) led to crystallization of the desired product at room temperature. The solvent was decanted and the crystals were washed with *n*-pentane (20 mL). The complex **2** was obtained as a violet, crystalline solid (0.95 g, 4.3 mmol, 54 % (69 %)^[1]). ¹H NMR (400 MHz, toluene-d₈, 25 °C) $\delta = 124.72$ (bs), 3.72 (bs, 4H, thf- α), 1.52 (bs, 4H, thf- β). ¹H NMR (400 MHz, thf-d₈, 25 °C) $\delta = 125.92$ (bs).

Spin densities and MO occupations for different bismetallocene complexes

Figure SI1: Spin distributions for bismetallocene complexes differing in the central metal ions (top) calculated with TPSSH/def2-TZVP in the high-spin state and occupation schemes of for the d orbitals in metallocenes (bottom).

Crystal Parameter

Table SI1: Selected interplanar and torsional angles [°] and interatomic distances [Å] of **2**, $[V(\mu_2-Cl)(\eta^5-Cp(CH_2)_2NMe_2)]_2^{[2]}$ and $[V(\mu_2-Cl)(\eta^5-Cp)(PEt_3)]_2^{[3]}$; plane^[4]: best-fit plane through corresponding atoms.

	2	$V(\mu_2-Cl)(\eta^5-$	$V(\mu_2-Cl)(\eta^5-$
		$Cp(CH_2)_2NMe_2)]_2^{[2]}$	$Cp)(PEt_3)]_2^{[3]}$
V1–V2	3.4123(2)	3.0144(18)	3.2452(22)
V1–Cl1; V1–Cl2;	2.4564(3);	2.4430(22); $2.4334(22);$	2.4391(31); 2.4388(29);
V2–Cl1; V2–Cl2	2.4475(3)	2.4301(23); 2.4537(20)	2.4375(31); 2.4527(30)
V1–O1/N1/P1;	2.1456(8)	2.2506(48); 2.2570(69)	2.5100(41); 2.5094(35)
V2-N2/P2			
V1-Cp(C1-C5);	2.279(13)-	2.252(69) - 2.326(7);	2.2353(101) - 2.2700(98);
V2-Cp(C6-C10)	2.3036(12)	2.2451(76) - 2.3117(69)	2.2438(112) -
			2.2839(103)
$V1-plane_{C1-C5};$	1.9519(2)	1.9470(12); 1.9324(13)	1.9406(16); 1.9570(16)
V2-plane _{C6-C10}			
Cl1-V1-Cl2;	91.815(10)	92.778(70); 92.596(72)	87.179(93); 86.904(91)
Cl1-V2-Cl2	~ /		
V1-Cl1-V2; V1-	88.185(10)	76.422(64); 76.164(65)	83.435(92); 83.124(92)
Cl2–V2	~ /		
O1/N1/P1-V1-	89.78(2);	93.432(150); 93.798(141);	94.046(87); 94.843(90);
Cl1; O1/N1/P1-	89.39(2)	91.213(171); 100.215(180)	96.293(91); 91.508(87)
V1–Cl2; N2/P2–			
V2-Cl2; N2/P2-			
V2–Cl1;			
$plane_{C1-C5}$	0.000(67)	75.428(264)	64.011(431)
$\text{plane}_{\text{C6}-\text{C10}}$			
$\mathrm{plane}_{\mathrm{Cl1,V1,Cl2}^-}$	0.000(5)	53.049(67)	47.212(80)
$\text{plane}_{\text{Cl1},\text{V2},\text{Cl2}}$			

Table SI2: Selected interplanar and torsional angles [°] and interatomic distances [Å] for **3** and $[CoCo]_2^{[5]}$, $[CoCo]_2^{*[5]}$ and $[NiNi]_2^{*[6]}$ obtained from X-ray structure analysis and from the structure optimization of the BS determinant with TPSSH / def2-TZVP; cent^[4]: centroid of the corresponding Cp ligand; plane^[4]: best-fit plane through corresponding atoms.

	3	$3(\mathrm{DFT})$	$[CoCo]_2$	$[CoCo]_2^*$	$[NiNi]_2^*$
M1-M1a	7.1212(3)	7.20	6.7392(4)	6.7244(7)	6.9705(3)
C7–C7a	2.9741(13)	3.04	2.9400(19)	3.0176(43)	2.9873(23)
C1–C1a	2.5650(13)	2.56	2.5594(19)	2.5633(45)	2.562(3)
C1-C7	1.4861(13)	1.48	1.4811(19);	1.4814(39);	1.482(3);
			1.4801(19)	1.4824(37)	1.478(3)
M1-Cp _{C7-C16}	2.2615(9) -	2.27 - 2.30	2.0799(16) -	2.0654(26) -	2.1527(15) -
	2.2934(10)		2.1782(14)	2.1753(26)	2.2548(15)
$plane_{C7-C11}$	26.677(42)	32.69	28.456(57)	33.734(107)	31.480(73)
$plane_{C7a-C11a}$					
$plane_{C7-C11}$	47.927(39)	42.57	40.280(48);	28.025(96);	42.397(62);
$plane_{C1-C6}$			42.516(48)	28.967(93)	42.893(63)
$\operatorname{cent}_{\operatorname{C7-C11}}$	3.8579(1)	3.86	3.4593(1);	3.4425(2);	3.637(1);
$\operatorname{cent}_{\mathrm{C12-C16}}$			3.4587(1)	3.4396(2)	3.629(1)
C7-C1-C1a-C7a	27.188(76)	27.09	29.655(111)	36.799(229)	27.564(134)
$C7-cent_{C7-C11}-$	20.770(69)	14.91	3.969(97);	18.551(189);	10.939(115);
$cent_{C12-C16}$ –C13			17.876(97)	15.703(186)	31.447(111)
C2-C3-C3a-C2a	14.404(86)	12.55	15.037(121)	19.307(264)	11.513(144)
M1-H2	3.2119(2)	3.14	3.3117(2);	3.5997(4);	3.2245(2) -
			3.3619(2)	3.6191 (4)	3.2252(2)

	r	r
Compound (CCDC)	2 (1554540)	3 (1554539)
Empirical formula	$\mathrm{C_{18}H_{26}Cl_2O_2V_2}$	$\mathrm{C}_{30}\mathrm{H}_{24}\mathrm{V}_{2}$
Formula weight	447.17	486.37
Temperature [K]	100(2)	100(2)
Wavelength [Å]	0.71073	0.71073
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/c$	C2/c
a [Å]	8.1826(1)	18.4035(4)
b [Å]	10.4231(2)	10.1646(2)
c [Å]	11.7182(2)	11.8559(3)
α [°]	90	90
β [°]	104.37	90.2150(10)
γ [°]	90	90
Volume $[Å^3]$	968.15(3)	2217.80(9)
Z	2	4
$D_{calc} [{ m g/cm^3}]$	1.534	1.457
Absorption coefficient $\mu [\mathrm{mm}^{-1}]$	1.249	0.859
F(000)	460	1000
Crystal size $[mm^3]$	$0.24 \times 0.17 \times 0.05$	$0.22\times0.16\times0.04$
Θ range for data collection [°]	3.23 to 33.50	2.21 to 32.50
	-12 <= h <= 12	-27 <=h <=27
Index ranges	-16 < =k < =16	-15 <= k <= 15
	-18 <= l <= 17	-17 <= l <= 17
Reflections collected	25226	25689
Independent reflections (R_{int})	$3731\ (0.0232)$	$3928\ (0.0223)$
Completeness [%] (to $\Theta = [\circ]$)	$98.0\ (33.50)$	98.0(32.50)
Max. and min. transmission	0.9402,0.7537	0.9665, 0.8336
Refinement method	Full-matrix	Full-matrix
	least-squares on F^2	least-squares on F^2
Data / restraints / parameters	$3731\ /\ 0\ /\ 109$	$3928 \ / \ 0 \ / \ 146$
Goodness-of-fit on F^2	1.037	1.031
Final R indices $[I > 2sigma(I)]$	R1 = 0.0283,	R1=0.0274,
_ 、 / _	wR2=0.0700	wR2=0.0697
R indices (all data)	R1 = 0.0312,	R1 = 0.0315,
	wR2=0.0720	wR2=0.0729
Largest diff. peak and hole $[eÅ^{-3}]$	0.942, -0.309	0.517, -0.238

Table SI3: Crystallographic Data and Experimental Parameter for Compounds 2 and 3

- [1] K. Jonas, W. Rüsseler, K. Angermund, C. Krüger, Angew. Chem. 1986, 98, 902–904.
- [2] G. Liu, X. Lu, M. Gagliardo, D. J. Beetstra, A. Meetsma, B. Hessen, Organometallics 2008, 27, 2316–2320.
- [3] J. Nieman, J. H. Teuben, F. B. Hulsbergen, R. A. G. de Graaff, J. Reedijk, *Inorg. Chem.* 1987, 26, 2376–2379.
- [4] K. Brandenburg, Diamond Version 3.1, Crystal Impact GbR, 1997–2005.
- [5] N. Pagels, O. Albrecht, D. Görlitz, A. Y. Rogachev, M. H. Prosenc, J. Heck, Chem.-Eur. J. 2011, 17, 4166–4176.
- [6] S. Trtica, M. H. Prosenc, M. Schmidt, J. Heck, O. Albrecht, D. Görlitz, F. Reuter, E. Rentschler, *Inorg. Chem.* 2010, 49, 1667–1673.