Electronic Supplementary Information

$\rm H_2O_2$ induced formation of graded composition sodium - doped tin dioxide and template - free synthesis of yolk - shell SnO_2 particles and their sensing application

Alexey A. Mikhaylov,^{a,b,c} Alexander G. Medvedev,^a Tatiana A. Tripol'skaya,^a Victor S. Popov,^a Artem S. Mokrushin,^a Dmitry P. Krut'ko,^d Petr V. Prikhodchenko^{*,a,c} and Ovadia Lev^{*,b,c}

Content

Fig. S1 Morphology of the peroxostannate precipitate. Row 1: SEM images of the precipitate obtained from 15 wt% hydrogen peroxide and different concentration of sodium hydroxostannate. Row 2: SEM images of the precipitate obtained from 0.4 M sodium hydroxostannate and varying concentrations of hydrogen peroxide.

Fig. S2 Pictures of the test vials 1 h and 3 days after preparation

Preparation of the gas sensor and the gas sensing setup

Fig. S3 Alumina sensor substrate

Thermodynamic data used for preparation of the pC-pH diagram of

tetrahydroxostannate

Table S1 Composition of the solutions used to construct the solubility diagram. 1.5 M solution of $Na_2Sn(OH)_6$ in DIW is denoted as Sn; DIW is denoted as W; and aqueous hydrogen peroxide is denoted as O. The wt% of H_2O_2 is presented in parentheses.

^{a.} Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russia. E-mail: prikhman@gmail.com.

^{b.}. The Casali Center and the Institute of Chemistry and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel. E-mail: ovadia@mail.huji.ac.il.

^c HUJ – NTU – CREATE and TUM – CREATE, 1 CREATE Way, 10-02 Create Tower, Singapore 138602, Singapore

^d Chemistry Department, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.

Fig. S1 Morphology of the peroxostannate precipitate. Row 1: SEM images of the precipitate obtained from 15 wt% hydrogen peroxide and different concentration of sodium hydroxostannate. Row 2: SEM images of the precipitate obtained from 0.4 M sodium hydroxostannate and varying concentrations of hydrogen peroxide.

Fig. S2 Pictures of the test vials 1 h and 3 days after preparation

Preparation of the gas sensor and the gas sensing setup.

For manufacturing of the gas sensor alumina substrates, composed of inter-digitated Pt electrodes on the topside and Pt heater on the backside (Figure S3) was used. The gas-sensor characterization was performed in a continuous flow test chamber (chamber volume: 3.5 cm^3). Dry air and 1000 ppm H₂ in the air were delivered to the chamber at a constant rate of 400 mL/min, controlled by a system of mass flow controllers. Special Bronkhorst and Fluke software was used to control and record the sensor signals during the experiment. By applying different voltages to the heater, the temperature of the sensors was adjusted to the desired value. Thus, the sensors were tested at 50 °C operating temperatures.

Fig. S3 Alumina sensor substrate.

Thermodynamic used for data preparation of the рС-рН diagram of tetrahydroxostannate $Sn(OH)_{4,S} + H^+ \rightarrow Sn(OH)_{3}^+ + H_2O \quad K = 10^{1.22}$ $Sn(OH)_{4,s} + 2H^{+} \rightarrow Sn(OH)_{2}^{2+} + 2H_{2}O \quad K = 10^{1.55}$ $Sn(OH)_{4,S} + 3H^{+} \rightarrow Sn(OH)^{3+} + 3H_{2}O \quad K = 10^{1.44}$ $Sn(OH)_{4,S} + 4H^{+} \rightarrow Sn^{4+} + 4H_2O$ $K = 10^{0.87}$ $Sn(OH)_{4,s} + H_2O \rightarrow Sn(OH)_5 + H^+$ $K = 10^{-7.75}$

 $Sn(OH)_{4,S} + 2H_2O \rightarrow Sn(OH)_6^{2-+} 2H^+ K = 10^{-7.75}$

Table S1 Composition of the solutions used to construct the solubility diagram. 1.5 M solution of $Na_2Sn(OH)_6$ in DIW is denoted as Sn; DIW is denoted as W; and aqueous hydrogen peroxide is denoted as O. The wt% of H_2O_2 is presented in parentheses.

_ inyurugen per	ionue is denoted de	50.110 wt/0 01 Hz	202 is presented in	i parentileses.	
	0.05 м Sn	0.1 м Sn	0.2 м Sn	0.4 м Sn	0.6 M Sn
0% H ₂ O ₂	Sn-0,084 mL	Sn -0,167	Sn-0.333	Sn-0,667	Sn-1,001
	O -0 mL	0-0	O-0	O-0	O-0
	W-2,416 mL	W-2.333	W-2.167	W-1.831	W-1.499
0.02% H ₂ O ₂	Sn-0.084	Sn -0.167	Sn-0.333	Sn-0.667	Sn-1.001
	O-0.003(15)	O-0.0032(15)	O-0.0033(15)	O-0.002(30)	O-0.002(30)
	W-2.413	W-2.330	W-2.164	W-1.831	W-1.497
0.1% H ₂ O ₂	Sn-0.084	Sn -0.167	Sn-0.333	Sn-0.667	Sn-1.001
	O - 0.0071(30)	O-0.072(30)	O-0.0073(30)	O-0.008(30)	O-0.008(30)
	W-2 409	W-2 261	W-2 163	W-1 825	W-1 491
1% H ₂ O ₂	Sn-0.084	Sn -0.167	Sn-0.333	Sn-0.667	Sn-1.001
	O-0.071(30)	O-0.072(30)	0-0.073(30)	O-0.076(30)	O-0.079(30)
	W-2 345	W-2 261	W-2 094	W-1 757	W-1 420
3%H ₂ O ₂	Sn-0.084	Sn -0 167	Sn-0 333	Sn-0 667	Sn-1 001
	0-0.214(30)	0-0.216(30)	0-0.221(30)	$O_{-0} 230(30)$	0-0.239(30)
	W-2 202	W-2 117	W-1 946	W-1 603	W-1 260
7%H ₂ O ₂	Sn-0.084	Sn -0 167	Sn-0 333	Sn-0.667	Sn-1 001
	$O_{-}0.299(50)$	$O_{-0} 302(50)$	$O_{-0} 308(50)$	$O_{-0} 321(50)$	$O_{-0} 334(50)$
	W-2 177	W-2 031	W-1 859	W-1 512	W-1 165
15%H ₂ O ₂	Sn-0.084	Sn -0 167	Sn-0 333	Sn-0.667	Sn-1 001
	$O_{-0} 661(50)$	$O_{-0} 688(50)$	$\Omega_{-0.682(50)}$	O_{-0} 709(50)	$O_{-}0.737(50)$
	W-1 755	W-1 665	W-1 485	W-1 124	W-0 762
20% H ₂ O ₂	VV 1.755	W 1.005	W 1.405	W 1.124	Sn-1 001
					$O_{1} 0 000 (30)$
					W-0 499
30%H ₂ O ₂	Sn-0.084	Sn -0 167	Sn-0 333	Sn-0 667	Sn-1 001
	0-0.713(86)	0-0.721(86)	0.0736(86)	0-0.766(86)	0-0.796(86)
	W-1 703	W-1 612	W-1 431	W-1.067	W-0 703
40% H ₂ O ₂		1.012	() 1.151	(* 1.007	Sn-1 001
					O-1.094(86)
					W-0.405
50%H ₂ O ₂	Sn-0.084	Sn -0 167	Sn-0 333	Sn-0 667	Sn-1 001
	0-1.273(86)	O_{-1} 286(86)	0-1 312(86)	O_{-1} 366(86)	$O_{-1} 419(86)$
	W-1 143	W-1 047	W-0.855	W-0.467	W-0.080
65%H ₂ O ₂	Sn-0.084	Sn -0 167	Sn-0 333	Sn-0.667	11 0.000
	0-1.747(86)	0-1.765(86)	$O_{-1} \ 801(86)$	0-1.876(86)	
	W-0 699	W-0 568	W-0 366	W-0	
	0.20	0.0.240	1.2 × 0	1.5 > + 0	
550/ 11 0	0.3 M Sn	0.9 M Sn	1.3 M Sn	1.5 M Sh	
55% H ₂ O ₂			0.3/06 gr		
			$Na_2Sn(OH)_6$		
		0.0400	1 mL 70% H ₂ O ₂		
/4% H ₂ O ₂		0.2488 gr			
		$Na_2Sn(OH)_6$			
0.40/ 11.0	0.0704	1 mL 86.5% H ₂ O ₂			
94% H ₂ O ₂	0.0/24 gr				
II O	$Na_2Sn(OH)_6$				
	1 mL 98.5% H ₂ O ₂			0.5000	
H ₂ O				0.5200 gr	
				$\operatorname{Na_2Sn(OH)_6}$	
	1	1		\mid I mL H ₂ O ₂	

Material and Solution Characterizations.

High Resolution Scanning Electron Microscope. SEM imaging was performed using the FEI Sirion High Resolution Scanning Electron Microscope (HR SEM, Eindhoven, Holland). Accelerating voltage was set at 5-15 kV with 5 mm working distance. Imaging was conducted using high resolution mode with a Through-the-Lens Detector. The specimen was prepared by dispersion of dried samples in ethanol in an ultrasonic bath, and the suspension was then dropped on a silicon wafer to dry.

Scanning Transmission Electron Microscope. STEM imaging was performed at 20 kV using the FEI Extra High Resolution Scanning Electron Microscope, MagellanTM 400L (Eindhoven, Holland). The specimen was prepared by dispersion of dried samples in ethanol in an ultrasonic bath, and the suspension was then dropped on a silicon wafer to dry.

The Helios PFIB DualBeam. SEM imaging of cross section of particles was performed using the Helios PFIB DualBeam. Microscope (DB FIB, Hillsboro, USA). Accelerating voltage was set at 5-15 kV with 5 mm working distance. The specimen was prepared by placing of dried samples on a carbon tape.

X-ray powder diffraction. XRD measurements were performed on a D8 Advance Diffractometer (Bruker AXS, Karlsruhe, Germany). The powder samples were carefully filled into low background quartz sample holders. The specimen weight was approximately 0.5 g. XRD patterns from 10° to 75° 20 were recorded at room temperature using CuK α radiation (k=1.5418Å) under the following measurement conditions: tube voltage of 40 kV, tube current of 40 mA, step scan mode with a step size 0.02° 20 and counting time of 1 s/step. XRD patterns were processed using Diffrac Plus software.

Determination of the size distribution profile of particles was performed using the Multiangle dynamic and static light scattering instrument Photocor Complex (Photocor Instruments, Tallinn, Estonia).

S-5

Determination of the surface area. The specific surface area of samples was performed using ATX-06 ("Katakon", Novosibirsc). As an adsorbate gas was used nitrogen and as a carrier gas was used helium. Definitions conducted by BET method. Sample characteristics measurements were occurred automatically in the adsorption-desorption mode using "Sorbometr M" program. Relative measurement error did not exceed 6%.

¹¹⁹Sn NMR spectra were collected on a Bruker Avance-500 (11.7T) spectrometer at resonance frequency 186.4 MHz. The measurements were performed using a single pulse sequence with rf. pulse duration of 10 μ s and recycling time 30 s.

pH measurements were performed using HI-2210-02 Bench Top pH Meter (HANNA Instruments Deutschland GmbH, Germany).