μ -Pyridine bridged Copper Complex with Robust Proton Reducing Ability

Karunamay Majee, Jully Patel, Babulal Das, and Sumanta Kumar Padhi

Supporting Information

Figure S0: Mass spectra of $[Cu(DQPD)]_2$ in DMF (Top; MS Spectra in centroid Mode and bottom: MSMS spectra at 963.1115).

Figure S1: Mass spectra of $[Cu(DQPD)]_2$ in DMF (Top; Experimental and Bottom: Simulated).

Figure S2: Mass spectra of [Cu(DQPDH)]⁺ in DMF (Top; Experimental and bottom: simulated).

Figure S3: Mass spectra of *in situ* formed [Cu(DQPDH)]⁺ in DMF/H₂O 95:5 v/v.

Figure S4: UV-Vis spectra of 0.05 mM $[Cu(DQPD)]_2$ in DMF. Inset shows the d-d transition of the complex (1mM).

Figure S5: UV-Vis spectra of 0.05 mM $[Cu(DQPDH)]^+$ in DMF. Inset shows the d-d transition of the complex (1mM).

Figure S6: EPR spectra of [Cu(DQPD)]₂ complex in DMF.

Figure S7: EPR spectra of solid [Cu(DQPD)]₂ complex.

Figure S8: EPR spectra of mononuclear [Cu(DQPDH)]⁺ complex.

Figure S9: (Left) The Cyclic Voltammogram of the ligand DQPDH₂ (1.0 mM) in DMF, 0.1 M TBAP, and an electrochemical potential scan rate of 100 mV s⁻¹. (**Right**) The Cyclic Voltammogram of 1.0 mM [Cu(DQPD)]₂ complex in DMF containing 0.1 M TBAP as supporting electrolyte and a scan rate of 100 mV s⁻¹ under N₂ atmosphere (The resting potential is at -0.375 V vs. SCE).

Figure S10: (Left) CV of 1.0 mM $[Cu(DQPDH)]^+$ in DMF containing 0.1 M TBAP as supporting electrolyte and a scan rate of 100 mV s⁻¹ under N₂ atmosphere; (Right) The resting potential is at +0.414 V vs. SCE.

Figure S11: Cyclic Voltammogram of *in situ* generated $[Cu(DQPDH)]^+$ from $[Cu(DQPD)]_2$ by addition of 2 equiv. pTsOH (red) and isolated $[Cu(DQPDH)]^+$ (black) in DMF/H₂O (95:5, v/v) containing 0.1 M TBAP as supporting electrolyte and a scan rate of 100 mV s⁻¹ under N₂ atmosphere.

Figure S12: Cyclic voltammogram of 1 mM $[Cu(DQPDH)]^+$ complex with varying concentration of acetic acid in DMF/H₂O (95:5, v/v) containing 0.1 M TBAP and a scan rate of 100 mV s⁻¹ under N₂ atmosphere (left). CV of the complex with varying concentration of acetic acid in DMF/H₂O (95:5, v/v) showing saturation of catalytic current after addition of 25 equivalent of acetic acid (right).

Figure S13: Cyclic voltammogram of 0.5 mM $[Cu(DQPDH)]^+$ complex with varying concentration of acetic acid in DMF/H₂O (95:5 , v/v) containing 0.1 M TBAP and an electrochemical potential scan rate of 100 mV s⁻¹ under N₂ atmosphere.

Figure S14: Cyclic voltammogram of 1.5 mM $[Cu(DQPDH)]^+$ complex with varying concentration of acetic acid in DMF/H₂O (95:5 , v/v) containing 0.1 M TBAP and an electrochemical potential scan rate of 100 mV s⁻¹ under N₂ atmosphere.

Figure S15: Cyclic voltammogram of 1 mM [Cu(DQPDH)]⁺ complex in presence of 0.1 M TBAP as supporting electrolyte in DMF/H₂O (95:5, v/v) solution at varying scan rates (25 mV s⁻¹ to 400 mV s⁻¹).

Figure S16: Peak current (i_p) vs. square root of scan rate (v^{1/2}) with linear fitted slop 1.7 x 10^{-5} AV^{-1/2} s^{-1/2}.

Figure S17: Dependence of catalytic current, ic, (a) on complex concentration in presence of 7.5 equivalent of acetic acid. (b) On acetic acid concentration for a catalyst concentration of 1.0 mM at a scan rate of 100 mV s^{-1} .

Figure S18: Dependence of ic/ip, on acetic acid concentration for three different catalyst concentrations of 0.5, 1.0 and 1.5 mM in presence of 0.1 M TBAP as supporting electrolyte in DMF/H₂O (95:5, v/v) at potential scan rate of 100 mV s⁻¹.

Figure S19: The UV-Visible spectrum of 0.05 mM $[Cu(DQPDH)]^+$ complex in presence of 25 equivalent acetic acid in DMF/H₂O (95:5, v/v) upto 10 hours.

Figure S20: UV -Visible spectra of 0.05 mM complex before and after bulk electrolysis on adding 25 equivalent of acetic acid at potential -1.6 V vs. SCE under inert atmosphere.

Figure S21: Current curve of 0.05mM [Cu(DQPDH)]⁺ during electrolysis at -1.6 V vs. SCE in DMF/H₂O (95:5, v/v) using 0.1M TBAP as supporting electrolyte.

Figure S22: FESEM image of glassy carbon plate (a) before bulk electrolysis and (c) after bulk electrolysis of 2 hours at -1.6 V vs. SCE. EDX data of glassy carbon plate (b) before bulk electrolysis and (d) after bulk electrolysis of 2 hours at -1.6 V vs. SCE. Electrolysis condition: 0.05 mM [Cu(DQPDH)]⁺ with 25 equivalent acetic acid in DMF/H₂O (95:5, v/v) using 0.1 M TBAP as supporting electrolyte.

Figure S23: The fluorescence quenching of fluorescein by $[Cu(DQPD)]_2$ in DMF/H₂O (80:20, v/v).

Figure S24: Stern-Volmer plot of emission quenching of 5×10^{-8} M fluorescein solution by $[Cu(DQPD)]_2$ in DMF/H₂O (80:20, v/v).

Figure S25: Rate of hydrogen production with varied concentration of $[Cu(DQPD)]_2$ in presence of 2mM fluorescein and 0.36 M TEA in 80:20 (v/v) DMF/H₂O.

Figure S26: Hydrogen production with $[Cu(DQPD)]_2 = 4.0 \times 10^{-6}$ M and [TEA] = 0.36 M in DMF/H₂O (80: 20, v/v) with various [FI] from 1–4 mM.

Figure S27: Rate of hydrogen production with varied concentration of [Fl] in presence of 4.0 $\times 10^{-6}$ M [Cu(DQPD)]₂ and 0.36 M TEA in 80:20 (v/v) DMF/H₂O.

Figure S28: Hydrogen production with 4.0×10^{-6} M [Cu(DQPD)]₂ in presence of 2 mM fluorescein and 0.36 M TEA in 80:20 (v/v) DMF/H₂O in presence of light (red) and under dark condition (black).

Figure S29: Hydrogen evolution by 4.0×10^{-6} M [Cu(DQPD)]₂ in presence of 2 mM fluorescein and 0.36 M TEA in 80:20 (v/v) DMF/H₂O (red) and blank solution in absence of catalyst (black).

Figure S30: Hydrogen evolution by 4.0×10^{-6} M [Cu(DQPD)]₂ in the presence of 0.36 M TEA and 2 mM fluorescein in 80 : 20 (v/v) DMF/H₂O (red) and 4.0×10^{-6} M [Cu(DQPD)]₂ in the presence of 0.36 M TEA without fluorescein (black).

Figure S31: The cyclic voltammogram of blank 80:20 (v/v) DMF/H₂O (black), in presence of 1000 equiv. TEA (red), and upon addition of 0.5 mM [Cu(DQPD)]₂ (Blue).

Figure S32: The UV-Visible spectrum of 0.05mM [Cu(DQPD)]₂ complex with irradiation of light in DMF/H₂O (80:20, v/v) upto 12 hours.

Figure S33: UV-vis spectral change of the system containing fluorescein (4 x 10^{-5} M), [Cu(DQPD)]₂ (8 x 10^{-5} M) and TEA (4 x 10^{-5} M) in 80:20 (v/v) DMF/H₂O (left). UV-vis spectral change of the system containing fluorescein (4 x 10^{-5} M) and TEA (4 x 10^{-5} M) in DMF/H₂O (80:20, v/v) (Right).

Figure S34 : Hydrogen production by 4.0×10^{-6} M [Cu(DQPD)]₂ complex in 80:20 (v/v) DMF/H₂O in presence of 1 mM fluorescein and 0.36 M TEA (black) and the recovery of the photocatalytic activity by the addition of extra Fl (1.0 mM) or 4.0×10^{-6} M [Cu(DQPD)]₂ after 22 h irradiation.

Table S1 Crystal data and structure refinement for [Cu(DQPD)] ₂ ·DMF·H ₂ O	
Identification code	[Cu(DQPD)]2
CCDC Number	1564520
Empirical formula	$C_{53}H_{39}Cu_2N_{11}O_6$
Formula weight	1053.05
Temperature/K	296.15
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.3335(5)
b/Å	28.1780(10)
c/Å	15.8677(6)
α/°	90
β/°	109.306(2)
γ/°	90
Volume/Å ³	4782.5(3)
Z	4
$\rho_{calc}g/cm^3$	1.462
μ/mm^{-1}	0.954
F(000)	2160.0
Crystal size/mm ³	$0.28 \times 0.22 \times 0.12$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	2.89 to 53.322
Index ranges	$-14 \le h \le 14, -35 \le k \le 33, -19 \le l \le 16$
Reflections collected	34839
Independent reflections	10079 [$R_{int} = 0.1020, R_{sigma} = 0.1504$]
Data/restraints/parameters	10079/3/654
Goodness-of-fit on F ²	0.934
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0575, wR_2 = 0.0980$
Final R indexes [all data]	$R_1 = 0.1352, wR_2 = 0.1083$
Largest diff. peak/hole / e Å ⁻³	1.11/-0.46