SUPPORTING INFORMATION

Generation and transformation of a hemi-iminal-based metalorganic Fe(II) structure obtained via subcomponent self-assembly in water

Grzegorz Markiewicz,^{ab} Miłosz Piechocki, ^{ab} Anna Walczak, ^{ab} Ewa A. Połomska, ^{ab} Jack Harrowfield^c and Artur R. Stefankiewicz^{ab}*

a Faculty of Chemistry, Adam Mickiewicz University, ul. Umultowska 89b, 61-614 Poznań, Poland.

b Center for Advanced Technologies, Adam Mickiewicz University, ul. Umultowska 89c, 61-614 Poznań.

c ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67083 Strasbourg, France

* E-mail: ars@amu.edu.pl

Contents

1. NMR data	S2
2. Mass Spectrometry Data	S6
3. UV-Vis data	S9
4. Elemental Analysis data	S9
5. Crystallographic data	S10
6. Supplementary References	S11

1. NMR data

Figure S2. COSY NMR (600 MHz CD₃CN) spectrum of [Fe^{II}(L)₂](ClO₄)_{2.}

S3

Figure S7^{. 1}H DOSY NMR (700 MHz, CD₃CN) spectrum of $[Fe^{II}(L)_2](CIO_4)_2$. Observed diffusion coefficient D=1.02 10⁻⁹ m²/s.

Figure S8: Long term stability of the $[Fe^{II}(L)_2](CIO_4)_2$ complex followed by ¹H NMR (300 MHz CD₃CN) spectra recorded in the absence of oxygen.

2. Mass Spectrometry Data

Figure S9. ESI-TOF MS spectrum of $[Fe^{II}(L)_2](CIO_4)_2$. Calc. $\{[Fe^{II}(L)_2]-H\}^+$ 481.107 m/z. Found 481.1080 m/z.

Figure 10. ESI-TOF MS spectrum of [Fe^{III}(L^{ox}-H)₂]ClO₄. Calc. [Fe^{III}(L^{ox}-H)₂]⁺ 508. 058 m/z. Found 508.0569 m/z.

Figure S11. ESI-TOF-MS spectra of the oxidation intermediates found in crystallisation solution (ethanol) and their chemical structures.

3. UV-Vis data

Figure S12. UV-Vis spectrum (MeCN solution) of $[Fe^{II}(L)_2](CIO_4)_2$.

4. Elemental Analysis data

Table S1. Elemental analysis

[Fe ^{II} (L) ₂](ClO ₄) ₂ * 2H ₂ O
<i>Calc. for C</i> ₂₄ <i>H</i> ₂₆ <i>Cl</i> ₂ <i>FeN</i> ₆ <i>O</i> ₁₂ C: 40.19; H: 3.65; N: 11.72;
Found 1: C: 40.16; H: 3.74; N: 11.78;
Found 2: C: 40.24; H: 3.64; N: 11.69;
Found 3: C: 40.18; H: 3.71; N: 11.79;
[Fe ^{III} (L ^{ox} -H) ₂]ClO ₄ *C ₂ H ₅ OH
Calc. for C ₂₆ H ₂₂ ClFeN ₆ O ₉ C: 47.76; H: 3.39; N: 12.85;
Found 1: C: 47.70; H: 3.44; N: 12.91;
Found 2: C: 47.67; H: 3.58; N: 12.74;
Found 3: C: 47.84; H: 3.50; N: 12.78;

5. Crystallographic data

Suitable single crystals for X-ray analysis were obtained by slow evaporation from ethanol. Data was collected on a 4-circle Xcalibur EosS2 diffractometer (Agilent Technologies) equipped with a CCD detector. X-ray data was collected at room temperature using graphitemonochromated Mo K α radiation ($\lambda \alpha$ = 0.71073 Å) with the ω -scan technique. For data reduction, UB-matrix determination and absorption correction CrysAlisPro software was used¹. Using Olex2², the structure was solved by direct methods using ShelXL³, and refined by full-matrix least-squares against F2 utilizing with the program SHELXL⁴. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located in idealized positions by molecular geometry and refined as rigid groups. Uiso of hydrogen atoms were set as 1.2 (for C-carries) and 1.5 (for O-carriers) times Ueq of the corresponding carrier atom. Selected structural parameters are reported in Table 1. Structure of [Fe^{III}(L^{ox}-H)₂]ClO₄.contain solvent accessible voids with small amount of solvent molecule(s) used for recrystallization. As they could not be modelled satisfactorily data were treated with the solvent mask in Olex2. Single-crystal structure analysis reveals that [Fe^{III}(L^{ox}-H)₂]ClO₄. crystallizes in the triclinic system P-1 space group. The Fe(III) ion is six-coordinated showing an almost perfected octahedral coordination geometry.

-	
Identification code	Radiation MoK α (λ = 0.71073)
Empirical formula C24H16ClFeN6O8	20 range for data collection/° 8.206 to
Formula weight 607.73	50.048
Temperature/K 293(2)	Index ranges -10 ≤ h ≤ 10, -14 ≤ k ≤ 14, -15 ≤
Crystal system triclinic	l ≤ 16
Space group P-1	Reflections collected 41842
a/Å 8.9536(2)	Independent
b/Å 11.9966(3)	reflections 4442 [Rint = 0.0664, Rsigma =
c/Å 13.8709(3)	0.0396]
α/° 107.694(2)	Data/restraints/para
β/° 105.087(2)	meters 4442/0/361
γ/° 99.040(2)	Goodness-of-fit on F2 1.065
Volume/Å3 1324.54(6)	Final R indexes [I>=2σ
Z 2	(I)] R1 = 0.0480, wR2 = 0.1295
ρcalcg/cm3 1.524	Final R indexes [all
μ/mm-1 0.730	data] R1 = 0.0612, wR2 = 0.1373
F(000) 618.0	Largest diff.
Crystal size/mm3 0.3 × 0.2 × 0.1	peak/hole / e Å-3 0.49/-0.43

Table S2 Crystal data	and structure	refinement for	$[Fe^{\parallel \parallel}(L^{ox}-H)_2]ClO_4.$
-----------------------	---------------	----------------	--

Figure S13 Hirshfeld surface representations (viewed down a) for (a) $[Fe^{III}(L^{ox}-H)_2]CIO_4$ (= $[Fe(bpca)_2]CIO_4$) and (b) $[Co(bpca)_2]CIO_4.CH_3OH,^5$ CCDC 187392. Red regions indicate points where interaction with an adjacent atom exceeds that of dispersion; in both cases, the atoms adjacent to the oxygen centres are aromatic hydrogen.

6. Supplementary References

1. Oxford Diffraction, Oxford Diffraction Ltd., Xcalibur CCD system, CrysAlis Software system,

Version 1.171, 2004.

2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, J. Appl.

Cryst. 2009, **42**, 339-341.

- 3. G. M. Sheldrick, Acta Cryst. A 2015, 71, 3-8.
- 4. G. M. Sheldrick, Acta Cryst. C 2015, 71, 3-8.
- 5. J. M. Rowland, M. M. Olmstead and P. K. Mascharak, *Inorg. Chem.* 2002, **41**, 2754-2760.