:Two Ruthenium Complexes Capable of Storing Multiple Electrons on a Single Ligand - Photophysical, Photochemical and Electrochemical properties of [Ru(phen)₂(TAPHAT)]²⁺ and [Ru(phen)₂(TAPHAT)Ru(phen)₂]⁴⁺.

Ludovic Troian-Gautier,^{†#*} Lionel Marcélis,[§] Julien De Winter,[‡] Pascal Gerbaux[‡] and Cécile Moucheron^{†*}

[†] Organic Chemistry and Photochemistry, Université libre de Bruxelles (U.L.B.), 50 Av. F.D. Roosevelt, CP 160/08, B-1050 Bruxelles, Belgium.

§ Engineering of Molecular NanoSystems, Université libre de Bruxelles (U.L.B.), 50 Av. F.D. Roosevelt, CP 165/64, B-1050 Bruxelles, Belgium.

‡ Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium.

* Email: <u>ludovic@live.unc.edu</u>, <u>cmouche@ulb.ac.be</u>

Present Address

Department of Chemistry - Murray Hall, University of North Carolina at Chapel Hill, 123 South Road, Chapel Hill, NC 27599, USA.

Table of contents

Structures of ligands	2
Mass spectrometry	3
NMR spectroscopy	7
Photostability measurement	9
Infrared spectroscopy	10

Structures of ligands

. "diNH₂TAP"

(1,4,5,8-tetraazaphenanthrene-9,10-diamine 1,4,5,8-tetraazaphenanthrene-9,10-diamine

"TAPdione"

1,4,5,8-tetraazaphenanthrene "**TAP**"

1,4,5,8,9,12-hexaazatriphenylene "HAT"

dipyrido[3,2-a:2',3'-c]phenazine "DPPZ"

Tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine "**TPPHZ**"

1,10-phenanthrolino[5,6-b]1,4,5,8,9,12-hexaazatriphenylene "PHEHAT"

 $1,4,5,8-tetraazaphenanthrene [9,10-b]1,4,5,8,9,12-hexaazatriphenylene\\ "TAPHAT"$

9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3",2"-l:2"',3"'-n]-pentacene 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3",2"-l:2"',3"'-n]-pentacene-10,21-quinone "TATPP"

Figure S1: Structures of the different ligands reported in this study.

Figure S2: ESI-MS spectrum that shows the formation of mono and dinuclear complexes upon reaction between $[Ru(phen)_2Cl_2]$ and TAPHAT. This mixture of products is not obtained when starting from precursor complex $[Ru(phen)_2(diNH_2TAP)]^{2+}$ (see below).

Figure S3: EI-MS spectrum of TAPHAT recorded from THF solutions.

Table S1: Peaks of interest obtained from figure S3. Peaks present at m/z = 122.1, 195.1 and 251.1 have	e not
been taken into consideration as they were already present in the neat solvent used for this study.	

m/z measured	Attribution	m/z calculated	Relative Intensity
389.1	$[M+H^{+}]^{+}$	389.10	34%
411.0	$[M+Na^{+}]^{+}$	411.08	39%
427.0	$[M+K^{+}]^{+}$	427.06	10%

Figure S5: ESI-MS spectrum of [Ru(phen)₂(TAPHAT)Ru(phen)₂]⁴⁺.4PF₆⁻

m/z measured	Attribution	m/z calculated	Relative Intensity
328.02	$[M^{4+}]^{4+}$	328.04	35 %
425.05	$[M^{4+} - [Ru(phen)_2]^{2+}]^{2+}$	425.07	22 %
437.03	$[M^{4+} - H^+]^{3+}$	437.06	32 %
485.68	$[M^{4+} + PF_6]^{3+}$	485.38	100 %
801.01	$[M^{4+} + 2PF_{6}]^{2+}$	801.05	48 %
893.97	$[M^{4+} + 3PF_6 + K^+]^{2+}$	893.52	26 %
1116.01	$[2M^{4+} + 5PF_6]^{3+}$	116.06	34 %
1746.00	$[2M^{4+} + 6PF_6]^{2+}$	1746.57	6 %
1838.95	$[2M^{4+} + 7PF_6 + K^+]^{2+}$	1838.53	6 %
1929.92	$[2M^{4+} + 8PF_6 + 2K^+]^{2+}$	1930.50	4 %

Table 5:	Peaks	of interest	obtained	from	figure	S10.
						~ - • •

Figure S6: ¹H NMR of 9-hydroxy-1,4,5,8-tetraazaphenanthrene recorded in CD₃OD at 300MHz

Figure S7: ¹H NMR of 1,4,5,8-tetraazaphenanthrene-9,10-dione recorded in DMSO-*d*₆ at 300MHz

Figure S8: ¹H NMR of [Ru(phen)₂(TAPHAT)]²⁺.2PF₆⁻ recorded in CD₃CN at 300MHz

Figure S2: ¹H NMR of [Ru(phen)₂(TAPHAT)Ru(phen)₂]⁴⁺.4PF₆⁻ recorded in CD₃CN at 300MHz

FigureS10:Photostabilityof $[Ru(phen)_2(TAPHAT)]^{2^+}$.2PF6⁻(left)and $[Ru(phen)_2(TAPHAT)Ru(phen)_2]^{4^+}$.4PF6⁻(right) under light irradiation (Xe, 200W) in acetonitrile and at room temperature

Figure S11: IR spectrum of 1,4,5,8-tetraazaphenanthrene-9,10-dione