Supporting Information

Synthesis, characterization, and anticancer activity of two mixed ligand copper(II) complexes by regulating VEGF/VEGFR2 signaling pathway

${ }^{\text {a }}$ College of Pharmacy, Guilin Medical University, Guangxi Guilin, 541004, China. Fax: 86773 5894158;
${ }^{b}$ Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, China.
* Corresponding Author: xyqin6688@163.com

Experimental Procedures

Instruments

IR spectras were taken on a IRAffinity-1 FT-IR spectrometer with KBr pallets in the range of $4000 \sim 400 \mathrm{~cm}$ ${ }^{1}$. The elemental analyses for C, H and N were performed on a Perkin-Elmer 2400C elemental analyzer. The crystal structures were determined by a four-circle CCD diffractometer(SuperNova, Single source at offset, Eos). Mass spectra were recorded on a Liquid Chromatography Mass Spectrometry(Exactive, Thermo Fisher Scientific) with DMSO as solvent and $\mathrm{CH}_{3} \mathrm{OH}$ diluent. 1H NMR spectra were recorded on a Bruker 400MHZ NMR spectrometer with $\mathrm{CD}_{3} \mathrm{OD}$ as solvent. X-ray powder diffractograms were recorded on a X-ray powder diffractometer(X' Pert PRO, Netherlands PANalytical company). Apoptosis assay were determined by BD FACSAriaIII. Tube formation assays of HUVECs were photographed with a bright field of inverted fluorescence phase contrast microscope(OLYMPUS IXTIFL, Japan). Cells were cultured in a CO_{2} incubator(311, Thermo, USA). Cells were observed with a inverted microscope(OLYMPUS ckx31, Japan). Ultrasonic cell fragmentation apparatus (VCX130, Sonics, USA), high-speed refrigeration centrifuge (LegendRT-Plus,Thermo, USA), pure water ultra-pure water system (Elix3+30L+3YNERGY, Millipore, USA), high-speed centrifuge(Mini Spin, Eppendorf, Germany), protein transfer membrane system(TE22, GE, USA), protein electrophoresis tank(DYCZ-24DN, Beijing LiuYi, China), rockers(TS-1000, Lin bell, jiangsu province, China), and gel imaging system UV projector(ZF-4, Shanhhai, China), were used in western blot assays.

Materials

Solvents and chemicals obtained from commercial sources were of reagent grade and were used without further purification unless specially noted. All the reagents used for syntheses of target complexes posses $\geqslant 98 \%$ purity. 5-Bromo-3-methoxy-salicylaldehyde reagent was purchased from Alfa Aesar. MTT, penicillin/streptomycin, and dimethylsulfoxide was purchased from Sigma-Aldrich, USA. Dulbecco's modified eagle medium (DMEM, Gibco), RPMI-1640 medium(Gibco), Fetal bovine serum (FBS, GEMINI), pancreatic enzyme(Gibco), cell culture
plates(Corning), Anti-FAK, Anti-phospho-FAK, Anti-Akt, Anti-phospho-Akt, Anti-Erk1/2, and Anti-phosphoErk1/2(Cell Signaling Technology) were used. GAPDH antibodies were procured from Thermo Scientific. Annexin V/PI apoptosis kit was purchased from BD Bioscience. HUVECs, HeLa, and C33A cell lines were purchased from Shanghai oulu biological technology co., ltd. Vascular endothelial growth factor (VEGF) was purchased from Sangon Biotech (Shanghai) Co., Ltd. Cell culture: HUVECs were cultured in DMEM medium supplemented with FBS (10%), penicillin $(100 \mu \mathrm{~g} / \mathrm{mL})$, and streptomycin ($100 \mu \mathrm{~g} / \mathrm{mL}$); C33A cells were cultured in DMEM medium supplemented with $\operatorname{FBS}(15 \%)$, penicillin $(100 \mu \mathrm{~g} / \mathrm{mL})$, and streptomycin $(100 \mu \mathrm{~g} / \mathrm{mL})$; HeLa cells were cultured in RPMI-1640 medium supplemented with FBS (10%), penicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$), and streptomycin ($100 \mu \mathrm{~g} / \mathrm{mL}$). They were incubated at $37^{\circ} \mathrm{C}$ in a humidified incubator with $5 \% \mathrm{CO}_{2}$ and 95% air, and the medium was changed thrice weekly. The animal experiments were carried out in experiment animal center, SPF experimental animal lab, Guilin Medical University.

X-ray crystallography

A suitable dimension single crystal of $\mathrm{Cu}-1$ and $\mathrm{Cu}-2$, respectively, was selected for the measurement. The data were collected on Bruker APEX-II CCD diffractometer equipped with graphite Mo Kla radiation ($\lambda=0.71073 \AA$) and used aomega scans mode. Computing data collection: Bruker APEX2; computing cell refinement and data reduction: Bruker SAINT. The structures of $\mathrm{Cu}-1$ and $\mathrm{Cu}-2$ were solved by direct methods using SHELXS-97 (Sheldrick, 2008) and refined by full matrix least-squares on F^{2} using the SHELXL 97 (Sheldrick, 2008) ${ }^{1}$ program. The non-hydrogen atoms were assigned by anisotropic displacement parameters in the refinement. Hydroxyls were geometrically positioned and refined using a mixed model. All H atoms bonded to C atoms and bonded to hydroxyls were calculated hydrogens, and other H atoms bonded to O atoms from water molecules were geometrically positioned and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.9300 \AA$ for aromatic [Uiso $(\mathrm{H})=1.2 \mathrm{Ueq}$ (C)], $\mathrm{C}-\mathrm{H}=0.9700 \AA$ for secondary methylene [Uiso $(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C})], \mathrm{C}-\mathrm{H}=0.9800 \AA$ for tertiary methylene $[$ Uiso $(\mathrm{H})=1.2 \operatorname{Ueq}(\mathrm{C})], \mathrm{C}-\mathrm{H}=0.9600 \AA$ for methyl $[\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C})], \mathrm{O}-\mathrm{H}=0.8200 \AA$ for hydroxyls $[\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{O})]$, and $\mathrm{O}-\mathrm{H}=0.8497 \sim 0.8504 \AA$ for water $[\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{O})]$. The crystal data were given in Table S1, and selected bond lengths and bond angles were listed in Table S2, and hydrogen bond lengths and hydrogen bond angles were listed in Table S 3 . The molecular structure of $\mathrm{Cu}-1$ with the atom numbering scheme was illustrated in Fig. S1(a), and the single crystal morphology of Cu-1 was illustrated in Fig. S1(b), and a 2-D sheet structure of $\mathrm{Cu}-1$ in ac plane was illustrated in Fig. S 1 (c). The single crystal morphology of $\mathrm{Cu}-2$ was illustrated in Fig. S2(a), and the molecular structure of $\mathrm{Cu}-2$ with the atom numbering scheme was illustrated in Fig. S2(b), and a 2-D sheet structure of $\mathrm{Cu}-2$ in $b c$ plane was illustrated in Fig. S2(c). The atomic coordinates and other parameters of the structure of $\mathrm{Cu}-1$ and $\mathrm{Cu}-2$ had been deposited in the Cambridge Crystallographic Data Center(no. 1571872 and 1571873; deposit@ccdc.cam.ac.uk). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, CAMBRIDGE CB2 1EZ, UK ; Email:deposit@ccdc.cam.ac.uk. Moreover, X-ray powder diffractograms of $\mathrm{Cu}-1$ and $\mathrm{Cu}-2$ were recorded on a X-ray powder diffractometer, and were shown in Figure S3.

Cell viability assay

Cell viability was determined by a MTT (3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyltetrazolium bromide) method. Cells at the exponential growth phase were diluted to $\left(8 \times 10^{4}\right.$ cells per mL with the appropriate medium, respectively, and were seeded in 96 -well plates at a volume of $100 \mu \mathrm{~L}$ per well with six duplicates. The other empty wells were filled with $1 \times$ PBS. Cells were incubated at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ for 12 h , and were treated with various concentrations of complex ($100 \mu \mathrm{~L}$ per well) diluted with the appropriate medium without FBS. The medium and drug-free control samples were prepared simultaneously. After incubation of the cells for up to 48 h , MTT ($20 \mu \mathrm{~L}$, $5 \mathrm{mg} / \mathrm{mL}$) solution was added into each well. After a further incubation for 4 h at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$, the medium was
sucked out by the microsyringe. DMSO $(200 \mu \mathrm{~L})$ was added to each well. The plates were oscillated for 10 minutes, and the values of OD were analyzed by an Microplate Reader at a wavelength of 490 nm . The percentage growth inhibitory rate of treated cells was calculated by (ODtested - ODmedia control) / (OD drug-free control - ODmedia control) $\times 100 \%$, where OD is the mean value calculated by using the data from six replicate tests. The IC_{50} values were determined by plotting the percentage viability versus concentration on a logarithmic graph and by reading the concentration at which 50% of cells were viable, relative to the control. $\mathrm{Cu}-1, \mathrm{Cu}-2$, cisplatinum, and suramin were dissolved in DMSO, and diluted with water. The final concentration of DMSO is less than 0.1%.

Supplementary Table

Table S1. Cystal data and structure refinement parameters for complexes $\mathrm{Cu}-1$ and $\mathrm{Cu}-2$.

Parameters	$\mathrm{Cu}-1$	$\mathrm{Cu}-2$
Empirical formula	$\mathrm{C}_{60} \mathrm{H}_{54} \mathrm{Br}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{6} \mathrm{O}_{11}$	$\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{BrCuN} \mathrm{O}_{6}$
Formula moiety	$\left[\mathrm{Cu}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{Br}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{2} \cdot 2\left(\mathrm{CH}_{3} \mathrm{OH}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$\left[\mathrm{Cu}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{Br}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$
Formula weight	1321.99	660.01
Temperature (K)	296(2)	296(2)
Wavelength (\AA)	0.71073	0.71073
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
Unit cell dimensions		
$a(\hat{\text { a }}$)	11.2337(18)	10.2415(14)
$b(\AA)$	11.6733(18)	11.8918(17)
$c(\AA)$	22.478(4)	13.6063(19)
$\alpha\left({ }^{\circ}\right)$	98.836(3)	88.632(2)
$\beta\left({ }^{\circ}\right)$	102.274(3)	70.613(2)
$V\left({ }^{\circ}\right)$	93.903(3)	66.244(2)
$\mathrm{V}\left(\AA^{3}\right)$	2830.6(8)	1419.1(3)
$\mathrm{Z}, \mathrm{D}_{\text {Calcd }}\left(\mathrm{Mg} \cdot \mathrm{m}^{-3}\right)$	2, 1.551	2, 1.545
Abs. coefficient (mm^{-1})	2.230	2.225
F(000)	1344	674
Crystal size (mm^{3})	$0.34 \times 0.27 \times 0.25$	$0.34 \times 0.24 \times 0.22$
θ range for data collection		2.30~26.41 / $1.89 \sim 25.35$
	$-13 \leq h \leq 13$	$-12 \leq h \leq 12$
Limiting indices	$-14 \leq k \leq 14$	$-14 \leq k \leq 14$
	$-27 \leq 1 \leq 27$	$-16 \leq 1 \leq 16$
Reflections collected	29493	11349
Independent reflections	10347 (Rint = 0.0594)	5159 (Rint = 0.024)
Observed data	7287 (l> 2б(I))	4223 (I > $2 \sigma(\mathrm{l})$)
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Nref / Npar / Nres	10347 / 739 / 0	5159/365/1
Final $R_{1}, w R_{2}, S[I>2 \sigma(I)]$	$\begin{aligned} & R=0.0546, w R=0.1433, S=1.024 \\ & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0789 P)^{2}+4.0026 P\right] \\ & \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & R=0.0350, w R=0.0956, S=1.049 \\ & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0536 P)^{2}+0.6495 P\right] \\ & \text { where } P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Final $R_{1}, w R_{2}, S$ (all data)	$R=0.0843, w R=0.1593, S=1.024$	$R=0.0456, w R=0.1017 \mathrm{~S}=1.049$
Shift max / mean	$0.001 / 0.000$	$0.000 / 0.000$
Completeness to theta	0.998	0.991
CCDC	1571872	1571873

Table S2. Selected bond distances (\AA)) and angles (${ }^{\circ}$) for complexes $\mathrm{Cu}-1$ and $\mathbf{C u}-2$.

$\mathrm{Cu}-1$
$4 / 13$

Bond	Dist. (\AA)	Bond	Dist. (\AA)
$\mathrm{Cu}(1)-\mathrm{O}(2)$	1.925 (3)	$\mathrm{Cu}(2)-\mathrm{O}(6)$	1.928 (3)
$\mathrm{Cu}(1)-\mathrm{N}(1)$	1.940 (3)	$\mathrm{Cu}(2)-\mathrm{N}(4)$	1.948 (4)
$\mathrm{Cu}(1)-\mathrm{O}(3)$	1.975 (3)	$\mathrm{Cu}(2)-\mathrm{O}(7)$	1.970 (3)
$\mathrm{Cu}(1)-\mathrm{N}(3)$	2.028 (4)	$\mathrm{Cu}(2)-\mathrm{N}(6)$	2.054 (4)
$\mathrm{Cu}(1)-\mathrm{N}(2)$	2.310 (4)	$\mathrm{Cu}(2)-\mathrm{N}(5)$	2.261 (4)
Angle	$\left({ }^{\circ}\right.$)	Angle	$\left({ }^{\circ}\right)$
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{N}(1)$	93.75 (14)	$\mathrm{O}(6)-\mathrm{Cu}(2)-\mathrm{N}(4)$	92.99 (14)
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(3)$	167.74 (15)	$\mathrm{O}(6)-\mathrm{Cu}(2)-\mathrm{O}(7)$	172.62 (14)
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(3)$	82.48 (14)	$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{O}(7)$	83.44 (15)
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{N}(3)$	91.34 (14)	$\mathrm{O}(6)-\mathrm{Cu}(2)-\mathrm{N}(6)$	92.93 (14)
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(3)$	169.23 (16)	$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{N}(6)$	165.55 (16)
$\mathrm{O}(3)-\mathrm{Cu}(1)-\mathrm{N}(3)$	90.57 (14)	$\mathrm{O}(7)-\mathrm{Cu}(2)-\mathrm{N}(6)$	89.11 (14)
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{N}(2)$	92.83 (15)	$\mathrm{O}(6)-\mathrm{Cu}(2)-\mathrm{N}(5)$	97.14 (14)
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$	111.32 (15)	$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{N}(5)$	115.00 (16)
$\mathrm{O}(3)-\mathrm{Cu}(1)-\mathrm{N}(2)$	99.41 (15)	$\mathrm{O}(7)-\mathrm{Cu}(2)-\mathrm{N}(5)$	90.23 (14)
$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{N}(2)$	77.85 (16)	$\mathrm{N}(6)-\mathrm{Cu}(2)-\mathrm{N}(5)$	77.27 (16)
Cu-2			
Bond	Dist. (\AA)	Bond	Dist. (\AA)
$\mathrm{Cu}(1)-\mathrm{O}(2)$	1.937 (2)	$\mathrm{Cu}(1)-\mathrm{N}(2)$	2.027 (2)
$\mathrm{Cu}(1)-\mathrm{N}(1)$	1.940 (2)	$\mathrm{Cu}(1)-\mathrm{N}(3)$	2.251 (2)
$\mathrm{Cu}(1)-\mathrm{O}(3)$	1.967 (2)		
Angle	$\left({ }^{\circ}\right)$	Angle	$\left({ }^{\circ}\right)$
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{N}(1)$	93.03 (8)	$\mathrm{O}(3)-\mathrm{Cu}(1)-\mathrm{N}(2)$	90.29 (9)
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(3)$	166.64 (9)	$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{N}(3)$	95.19 (9)
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(3)$	83.55 (9)	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(3)$	113.92 (9)
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{N}(2)$	90.73 (9)	$\mathrm{O}(3)-\mathrm{Cu}(1)-\mathrm{N}(3)$	98.01 (8)
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$	168.38 (9)	$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(3)$	76.64 (9)

Table S3. Hydrogen bond lengths (Å) and angles (${ }^{\circ}$)for complexes $\mathrm{Cu}-1$ and $\mathrm{Cu}-2$.

$\mathrm{Cu}-1$				
$D-H \cdots A$	D-H	H \cdots A	D \cdots A	<DHA
$\mathrm{O}(10)-\mathrm{H}(10) \cdots \mathrm{Br}(1)^{\# a}$	0.82	3.14	3.870 (6)	149.6
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{WB}) \cdots \mathrm{O}(10)$	0.85	2.03	2.870 (9)	168.9
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{WA}) \cdots \mathrm{O}(9)$	0.85	2.04	2.881 (8)	172.0
$\mathrm{O}(9)-\mathrm{H}(9 \mathrm{~A}) \cdots \mathrm{O}(8)$	0.82	1.91	2.710 (6)	166.5
$\mathrm{C}(29)-\mathrm{H}(29) \cdots \mathrm{O})$	0.93	2.39	3.241	152.08
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A}) \cdots \mathrm{O}(3)$	0.96	2.66	3.385	132.43
$\mathrm{C}(58)-\mathrm{H}(58) \cdots \mathrm{O}(1)$	0.93	2.47	3.224	138.13
Cu-2				
D—H \cdots A	D-H	H \cdots A	D \cdots A	D—H \cdots A
O6-H6 \cdots O	0.82	1.97	2.765 (8)	161.7
O5-H5A \cdots O	0.82	1.89	2.695 (5)	165.5

Symmetry codes: For complex Cu-1 :(\#a) $x+1, y, z$.

Figure S1. (a) Molecular view of $\mathrm{Cu}-1$ with the atom labeling scheme, and ellipsoids were drawn at the 50% probability level; (b) The single crystal morphology of $\mathrm{Cu}-1$; (c) A view of 2-D stratified structure of Cu-1 in ac plane. Some H atoms were omitted for clarity. Dashed lines are hydrogen bonds in (c).

Figure S2. (a) The single crystal morphology of $\mathrm{Cu}-2$; (b) Molecular view of $\mathrm{Cu}-2$ with the atom labeling scheme, and ellipsoids were drawn at the 50% probability level; (c) A view of 2-D stratified structure of Cu-2 in bc plane. Some H atoms were omitted for clarity. Dashed lines are hydrogen bonds in (c).

Figure S3. The powder diffractograms and their simulated diffractograms generated from single crystal X-ray diffraction data. (a) Cu-1; (b) Cu-2.

Figure S4. Cell inhibition rates assays of HUVECs, C33A, and HeLa cell lines treated with the various concentration of $\mathrm{Cu}-1, \mathrm{Cu}-2$, and cisplatinum for 48 h using a MTT method, respectively. (a) $\mathrm{Cu}-1$; (b) Cu-2; (c) Cisplatinum.

Figure S5. FT-IR of Schiff base ligand $\left[\mathrm{K}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{Br}\right)\right]$.

$$
\begin{array}{ll}
m / z: 454.14 & \mathrm{M}^{+} \\
m / z: 453.16 & (\mathrm{M}-1)^{+} \\
m / z: 455.14 & (\mathrm{M}+1)^{+} \\
m / z: 456.09 & (\mathrm{M}+2)^{+}
\end{array}
$$

Figure S6. Liquid Chromatography Mass Spectrometry of positive ion of Shiff base ligand $\left[\mathrm{K}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{Br}\right)\right]$.

Figure S7. 1H NMR spectra $\left[\mathrm{CD}_{3} \mathrm{OD}\right)$ of Shiff base ligand $\left[\mathrm{K}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{Br}\right)\right]$.

Figure S8. FT-IR of $\mathrm{Cu}-1$.

(Cu(C)

Figure S9. Liquid Chromatography Mass Spectrometry of positive ion of $\mathrm{Cu}-1$.

Figure S10. FT-IR of Cu-2.

Figure S11. Liquid Chromatography Mass Spectrometry of positive ion of Cu-2.

References

1. G. M Sheldrick, Acta Cryst. A. 2008, 64, 112.
