Magnetic Behavior of Bimetallic Layered Phases

 $M'_{0.2}Mn_{0.8}PS_3$ (M' = Zn^{II}, Cu^{II}, Ni^{II}, Co^{II})

P. Fuentealba^{1,2}, C. Cortes^{1,2}, J. Manzur^{2,3}, V. Paredes-García^{2,4}, D. Venegas-Yazigi^{2,5}, I. D. A. Silva⁶, R. C. de Santana^{7*}, C. J. Magon⁶, E. Spodine^{1,2*}.

> ¹Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chille, Santiago, Chile. ²CEDENNA, Santiago, Chile.

³Facultad de Ciencias Físicas y Mataméticas, Universidad de Chile, Santiago, Chile.

⁴ Departamento de Ciencias Químicas, Universidad Andrés Bello, Santiago, Chile.

⁵Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

⁶Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brasil. ⁷Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil.

Fig. S1. Arrangement of Mn(II) ions and vacancies in the potassium precursor $K_{0.4}Mn_{0.8}PS_3$ · H_2O , as determined by neutron diffraction (left) [^{1,2}]; and proposed arrangement for Mn(II) and secondary transition metal ions in the studied bimetallic phases (right)

Vacancy

Secondary transition metal ion

Fig. S2: Magnetic susceptibility plots $\chi_M(T)$ and $\chi_M^{-1}(T)$ of (a) $Zn_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$, (b) $Ni_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$ and (c) $Co_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$. The red lines are the least-square fit with Eq (2) as described in text. The blue line is the least square fit with Eq (4) as described in the text.

Fig. S3: FC and ZFC susceptibility curves of (a) $Zn_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$, (b) $Cu_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$, (c) $Ni_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$ and (d) $Co_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$.

Fig. S4: (a) to (c) Field dependence of magnetization; and (d) to (f) first derivative curves. Measurements made for $Zn_{0.2}Mn_{0.8}PS_3$, $Ni_{0.2}Mn_{0.8}PS_3$ and $Co_{0.2}Mn_{0.8}PS_3$ at different temperatures.

Fig. S5: EPR spectra of (a) $Zn_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$ and (b) $Ni_{0.2}Mn_{0.8}PS3 \cdot 0.25H_2O$.

Fig. S6. $I_{\text{DIN}}(T)$ of the studied phases.

Fig. S7: Comparisons between EPR intensities after double integration (I_{DIN}) with magnetic susceptibility data (χ_M), and EPR intensities ($I_{DIN}T$) with magnetic susceptibility ($\chi_M T$) temperature product data of pristine and bimetallic phases: (a) MnPS₃, (b) Zn_{0.2}Mn_{0.8}PS₃·0.25H₂O, (c) Cu_{0.2}Mn_{0.8}PS₃·0.25H₂O, (d) Ni_{0.2}Mn_{0.8}PS₃·0.25H₂O and (e) Co_{0.2}Mn_{0.8}PS₃·0.25H₂O.

Fig S8. First derivative of the $\chi T(T)$ plot for the pristine and bimetallic phases: (a) MnPS₃, (b) $Zn_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$, (c) $Cu_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$, (d) $Ni_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$ and (e) $Co_{0.2}Mn_{0.8}PS_3 \cdot 0.25H_2O$.

- (1) Evans, J. S. O.; O'Hare, D.; Clement, R. The Structure of Co(.eta.-C5H5)2+ and NMe4+ Intercalates of MnPS3: An X-Ray, Neutron-Diffraction, and Solid-State NMR Study. J. Am. Chem. Soc. **1995**, 117 (16), 4595–4606 DOI: 10.1021/ja00121a017.
- (2) Evans, J. S. O.; O'Hare, D.; Clement, R.; Leaustic, A.; Thuéry, P. Origins of the Spontaneous Magnetization in MnPS3 Intercalates: A Magnetic Susceptibility and Powder Neutron Diffraction Study. *Adv. Mater.* **1995**, 7 (8), 735–739 DOI: 10.1002/adma.19950070812.