Electronic Supplementary Information

Syntheses and characterization of three new sulfides with large band gaps: acentric $Ba_4Ga_4SnS_{12}$, centric $Ba_{12}Sn_4S_{23}$ and $Ba_7Sn_3S_{13}$

Rui-Huan Duan,^{a,b} Peng-Fei Liu,^{c,d} Hua Lin,^{b,*} Shang-Xiong Huangfu^e and Li-Ming Wu^{b,f,*}

^aHenan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

^cInstitute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China

^dDongguan Neutron Science Center, Dongguan 523803, China

^ePhysics Institute of the University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

^fBeijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China E-mail: linhua@fjirsm.ac.cn and liming_wu@fjirsm.ac.cn.

			1			
Atom	Wyckoff	x	Y	Ζ	U_{eq}	Осси.
Ba1	8 <i>e</i>	0.02346(2)	0.30237(2)	0.04514(6)	0.0172(2)	1
Gal	8e	-0.26034(4)	0.35857(4)	0.0492(2)	0.0114(2)	0.17
Sn1	4 <i>e</i>	-0.26034(4)	0.35857(4)	0.0492(2)	0.0114(2)	0.83
Ga2	2b	0	0	1/2	0.0118(4)	0.31
Sn2	2b	0	0	1/2	0.0118(4)	0.69
S 1	8e	-0.14247(9)	0.48432(9)	0.0428(2)	0.0133(2)	1
S2	8e	-0.1994(2)	0.2091(2)	0.2096(2)	0.0149(3)	1
S3	8 <i>e</i>	0.0999(2)	0.0902(2)	0.2615(2)	0.0155(3)	1
			2			
Atom	Wyckoff	x	Y	Ζ	U_{eq}	Осси.
Ba1	4e	0.44212(5)	0.44106(6)	0.09213(3)	0.0142(2)	1
Ba2	4e	0.58219(5)	-0.47636(6)	0.41276(3)	0.0181(2)	1
Ba3	4e	0.43316(5)	0.04582(6)	0.34135(3)	0.0179(2)	1
Ba4	4e	0.69096(5)	-0.17378(6)	0.34043(3)	0.0185 (2)	1
Ba5	4 <i>e</i>	0.25056(6)	0.18198(7)	0.15254(3)	0.208(2)	1
Ba6	4 <i>e</i>	0.56826(5)	1.00086(6)	0.16007(3)	0.0133(2)	1
Ba7	4 <i>e</i>	0.42692(6)	-0.32679(6)	0.21241(3)	0.0174(2)	1
Ba8	4 <i>e</i>	0.7308(4)	0.6777(3)	0.09904(9)	0.0199(7)	0.87
Ba8'	4 <i>e</i>	0.696(5)	0.657(3)	0.092(2)	0.037(8)	0.13
Ba9	4 <i>e</i>	-0.06304(5)	-0.16836(6)	0.22577(3)	0.0192(2)	1
Ba10	4e	0.18927(7)	-0.15751(7)	0.09825(3)	0.0280(2)	1
Ba11	4e	0.44493(7)	0.82042(7)	0.00066(3)	0.0277(2)	1
Ba12	4e	-0.04792(7)	0.6707(3)	-0.0058(2)	0.0191(7)	0.91
Ba'	4 <i>e</i>	-0.0532(2)	0.638(2)	-0.0229(2)	0.013(4)	0.09
Sn1	4e	0.21914(6)	-0.09320(6)	0.23993(3)	0.0121(2)	1
Sn2	4 <i>e</i>	0.22755(6)	0.60198(6)	-0.01414(3)	0.0118(2)	1
Sn3	4 <i>e</i>	0.71900(6)	-0.39427(6)	0.23556(3)	0.0110(2)	1
Sn4	4 <i>e</i>	0.77531(6)	-0.60241(6)	0.51462(3)	0.0135(2)	1
S 1	4 <i>e</i>	0.4822(2)	0.2374(2)	0.1667(2)	0.0182(6)	1
S2	4 <i>e</i>	0.5896(2)	0.2356(3)	0.1147 (2)	0.0178(6)	1
S3	4 <i>e</i>	0.6128(2)	0.6128(2)	0.1806(2)	0.0218(7)	1
S4	4 <i>e</i>	0.3690(2)	0.6847(3)	0.0974(2)	0.0199(6)	1

Table S1. Atomic coordinates, equivalent isotropic displacement parameters and occupancies of Ba₄Ga₄SnS₁₂ (1), Ba₁₂Sn₄S₂₃ (2) and Ba₇Sn₃S₁₃ (3).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S5	4 <i>e</i>	0.6979(2)	-0.2066(2)	0.2199(2)	0.0196(6)	1
S7 $4e$ $0.6150(2)$ $0.0642(3)$ $0.2793(2)$ $0.0212(6)$ 1S8 $4e$ $0.2891(2)$ $0.4571(3)$ $0.1758(2)$ $0.0184(6)$ 1S9 $4e$ $0.6089(2)$ $0.4585(3)$ $0.0195(2)$ $0.0233(7)$ 1S10 $4e$ $0.4551(2)$ $-0.1911(3)$ $0.3107(2)$ $0.0207(6)$ 1S11 $4e$ $0.6213(2)$ $-0.0085(3)$ $0.4230(2)$ $0.0188(6)$ 1S12 $4e$ $0.3898(3)$ $-0.4426(3)$ $0.4705(2)$ $0.0286(8)$ 1S13 $4e$ $0.4723(3)$ $-0.2544(3)$ $0.38305(2)$ $0.0267(7)$ 1S14 $4e$ $0.3514(3)$ $0.0592(3)$ $0.4422(2)$ $0.0300(8)$ 1S15 $4e$ $0.4063(2)$ $-0.4918(2)$ $0.3099(2)$ $0.0182(6)$ 1S16 $4e$ $0.8137(3)$ $-0.5631(3)$ $0.4333(2)$ $0.0387(2)$ 1S17 $4e$ $0.3176(2)$ $0.2196(3)$ $0.27113(2)$ $0.0247(7)$ 1S18 $4e$ $0.5097(2)$ $0.7568(3)$ $0.1115(2)$ $0.0247(7)$ 1S19 $4e$ $0.5097(3)$ $0.2913(3)$ $0.0251(2)$ $0.0289(8)$ 1S20 $4e$ $0.5403(3)$ $-0.7257(3)$ $0.3923(2)$ $0.0331(8)$ 1S21 $4e$ $0.7053(3)$ $-0.2903(3)$ $0.4762(2)$ $0.0245(2)$ 1S23 $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1	S6	4 <i>e</i>	0.6930(2)	-0.4368(3)	0.3190(2)	0.0179(6)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S 7	4 <i>e</i>	0.6150(2)	0.0642(3)	0.2793(2)	0.0212(6)	1
89 $4e$ $0.6089(2)$ $0.4585(3)$ $0.0195(2)$ $0.0233(7)$ 1 $S10$ $4e$ $0.4551(2)$ $-0.1911(3)$ $0.3107(2)$ $0.0207(6)$ 1 $S11$ $4e$ $0.6213(2)$ $-0.0085(3)$ $0.4230(2)$ $0.0188(6)$ 1 $S12$ $4e$ $0.3898(3)$ $-0.4426(3)$ $0.4705(2)$ $0.0286(8)$ 1 $S13$ $4e$ $0.4723(3)$ $-0.2544(3)$ $0.38305(2)$ $0.0267(7)$ 1 $S14$ $4e$ $0.3514(3)$ $0.0592(3)$ $0.4422(2)$ $0.0300(8)$ 1 $S15$ $4e$ $0.4063(2)$ $-0.4918(2)$ $0.3099(2)$ $0.0182(6)$ 1 $S16$ $4e$ $0.8137(3)$ $-0.5631(3)$ $0.4333(2)$ $0.0247(7)$ 1 $S17$ $4e$ $0.3176(2)$ $0.2196(3)$ $0.27113(2)$ $0.0247(7)$ 1 $S18$ $4e$ $0.5097(2)$ $0.7568(3)$ $0.1115(2)$ $0.0247(7)$ 1 $S19$ $4e$ $0.2923(3)$ $0.2913(3)$ $0.0251(2)$ $0.0331(8)$ 1 $S20$ $4e$ $0.5403(3)$ $-0.7257(3)$ $0.3923(2)$ $0.0331(8)$ 1 $S21$ $4e$ $0.7053(3)$ $-0.2903(3)$ $0.4762(2)$ $0.0285(8)$ 1 $S22$ $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1 $S23$ $4e$ $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S 8	4 <i>e</i>	0.2891(2)	0.4571(3)	0.1758(2)	0.0184(6)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S9	4 <i>e</i>	0.6089(2)	0.4585(3)	0.0195(2)	0.0233(7)	1
S11 $4e$ $0.6213(2)$ $-0.0085(3)$ $0.4230(2)$ $0.0188(6)$ 1 $S12$ $4e$ $0.3898(3)$ $-0.4426(3)$ $0.4705(2)$ $0.0286(8)$ 1 $S13$ $4e$ $0.4723(3)$ $-0.2544(3)$ $0.38305(2)$ $0.0267(7)$ 1 $S14$ $4e$ $0.3514(3)$ $0.0592(3)$ $0.4422(2)$ $0.0300(8)$ 1 $S15$ $4e$ $0.4063(2)$ $-0.4918(2)$ $0.3099(2)$ $0.0182(6)$ 1 $S16$ $4e$ $0.8137(3)$ $-0.5631(3)$ $0.4333(2)$ $0.0387(2)$ 1 $S17$ $4e$ $0.3176(2)$ $0.2196(3)$ $0.27113(2)$ $0.0247(7)$ 1 $S18$ $4e$ $0.5097(2)$ $0.7568(3)$ $0.1115(2)$ $0.0247(7)$ 1 $S19$ $4e$ $0.2923(3)$ $0.2913(3)$ $0.0251(2)$ $0.0289(8)$ 1 $S20$ $4e$ $0.5403(3)$ $-0.7257(3)$ $0.3923(2)$ $0.0331(8)$ 1 $S21$ $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1 $S23$ $4e$ $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S10	4e	0.4551(2)	-0.1911(3)	0.3107(2)	0.0207(6)	1
S12 $4e$ $0.3898(3)$ $-0.4426(3)$ $0.4705(2)$ $0.0286(8)$ 1 $S13$ $4e$ $0.4723(3)$ $-0.2544(3)$ $0.38305(2)$ $0.0267(7)$ 1 $S14$ $4e$ $0.3514(3)$ $0.0592(3)$ $0.4422(2)$ $0.0300(8)$ 1 $S15$ $4e$ $0.4063(2)$ $-0.4918(2)$ $0.3099(2)$ $0.0182(6)$ 1 $S16$ $4e$ $0.8137(3)$ $-0.5631(3)$ $0.4333(2)$ $0.0387(2)$ 1 $S17$ $4e$ $0.3176(2)$ $0.2196(3)$ $0.27113(2)$ $0.0210(6)$ 1 $S18$ $4e$ $0.5097(2)$ $0.7568(3)$ $0.1115(2)$ $0.0247(7)$ 1 $S19$ $4e$ $0.2923(3)$ $0.2913(3)$ $0.0251(2)$ $0.0289(8)$ 1 $S20$ $4e$ $0.5403(3)$ $-0.7257(3)$ $0.3923(2)$ $0.0331(8)$ 1 $S21$ $4e$ $0.7053(3)$ $-0.2903(3)$ $0.4762(2)$ $0.0285(8)$ 1 $S22$ $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1 $S23$ $4e$ $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S11	4e	0.6213(2)	-0.0085(3)	0.4230(2)	0.0188(6)	1
S13 $4e$ $0.4723(3)$ $-0.2544(3)$ $0.38305(2)$ $0.0267(7)$ 1 $S14$ $4e$ $0.3514(3)$ $0.0592(3)$ $0.4422(2)$ $0.0300(8)$ 1 $S15$ $4e$ $0.4063(2)$ $-0.4918(2)$ $0.3099(2)$ $0.0182(6)$ 1 $S16$ $4e$ $0.8137(3)$ $-0.5631(3)$ $0.4333(2)$ $0.0387(2)$ 1 $S17$ $4e$ $0.3176(2)$ $0.2196(3)$ $0.27113(2)$ $0.0210(6)$ 1 $S18$ $4e$ $0.5097(2)$ $0.7568(3)$ $0.1115(2)$ $0.0247(7)$ 1 $S19$ $4e$ $0.2923(3)$ $0.2913(3)$ $0.0251(2)$ $0.0289(8)$ 1 $S20$ $4e$ $0.5403(3)$ $-0.7257(3)$ $0.3923(2)$ $0.0331(8)$ 1 $S21$ $4e$ $0.7053(3)$ $-0.2903(3)$ $0.4762(2)$ $0.0285(8)$ 1 $S22$ $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1 $S23$ $4e$ $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S12	4 <i>e</i>	0.3898(3)	-0.4426(3)	0.4705(2)	0.0286(8)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S13	4 <i>e</i>	0.4723(3)	-0.2544(3)	0.38305(2)	0.0267(7)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S14	4 <i>e</i>	0.3514(3)	0.0592(3)	0.4422(2)	0.0300(8)	1
S16 $4e$ $0.8137(3)$ $-0.5631(3)$ $0.4333(2)$ $0.0387(2)$ 1S17 $4e$ $0.3176(2)$ $0.2196(3)$ $0.27113(2)$ $0.0210(6)$ 1S18 $4e$ $0.5097(2)$ $0.7568(3)$ $0.1115(2)$ $0.0247(7)$ 1S19 $4e$ $0.2923(3)$ $0.2913(3)$ $0.0251(2)$ $0.0289(8)$ 1S20 $4e$ $0.5403(3)$ $-0.7257(3)$ $0.3923(2)$ $0.0331(8)$ 1S21 $4e$ $0.7053(3)$ $-0.2903(3)$ $0.4762(2)$ $0.0285(8)$ 1S22 $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1S23 $4e$ $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S15	4 <i>e</i>	0.4063(2)	-0.4918(2)	0.3099(2)	0.0182(6)	1
S17 $4e$ $0.3176(2)$ $0.2196(3)$ $0.27113(2)$ $0.0210(6)$ 1 $S18$ $4e$ $0.5097(2)$ $0.7568(3)$ $0.1115(2)$ $0.0247(7)$ 1 $S19$ $4e$ $0.2923(3)$ $0.2913(3)$ $0.0251(2)$ $0.0289(8)$ 1 $S20$ $4e$ $0.5403(3)$ $-0.7257(3)$ $0.3923(2)$ $0.0331(8)$ 1 $S21$ $4e$ $0.7053(3)$ $-0.2903(3)$ $0.4762(2)$ $0.0285(8)$ 1 $S22$ $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1 $S23$ $4e$ $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S16	4 <i>e</i>	0.8137(3)	-0.5631(3)	0.4333(2)	0.0387(2)	1
S18 $4e$ $0.5097(2)$ $0.7568(3)$ $0.1115(2)$ $0.0247(7)$ 1 S19 $4e$ $0.2923(3)$ $0.2913(3)$ $0.0251(2)$ $0.0289(8)$ 1 S20 $4e$ $0.5403(3)$ $-0.7257(3)$ $0.3923(2)$ $0.0331(8)$ 1 S21 $4e$ $0.7053(3)$ $-0.2903(3)$ $0.4762(2)$ $0.0285(8)$ 1 S22 $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1 S23 $4e$ $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S17	4 <i>e</i>	0.3176(2)	0.2196(3)	0.27113(2)	0.0210(6)	1
S19 $4e$ $0.2923(3)$ $0.2913(3)$ $0.0251(2)$ $0.0289(8)$ 1 $S20$ $4e$ $0.5403(3)$ $-0.7257(3)$ $0.3923(2)$ $0.0331(8)$ 1 $S21$ $4e$ $0.7053(3)$ $-0.2903(3)$ $0.4762(2)$ $0.0285(8)$ 1 $S22$ $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1 $S23$ $4e$ $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S18	4 <i>e</i>	0.5097(2)	0.7568(3)	0.1115(2)	0.0247(7)	1
S20 $4e$ $0.5403(3)$ $-0.7257(3)$ $0.3923(2)$ $0.0331(8)$ 1 S21 $4e$ $0.7053(3)$ $-0.2903(3)$ $0.4762(2)$ $0.0285(8)$ 1 S22 $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1 S23 $4e$ $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S19	4 <i>e</i>	0.2923(3)	0.2913(3)	0.0251(2)	0.0289(8)	1
S21 $4e$ $0.7053(3)$ $-0.2903(3)$ $0.4762(2)$ $0.0285(8)$ 1S22 $4e$ $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1S23 $4e$ $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S20	4 <i>e</i>	0.5403(3)	-0.7257(3)	0.3923(2)	0.0331(8)	1
S224e $0.3649(3)$ $-0.0632(3)$ $0.2015(2)$ $0.0425(2)$ 1S234e $0.8831(4)$ $-0.5067(3)$ $0.5727(2)$ $0.0460(2)$ 1	S21	4 <i>e</i>	0.7053(3)	-0.2903(3)	0.4762(2)	0.0285(8)	1
<u>S23</u> 4e 0.8831(4) -0.5067(3) 0.5727(2) 0.0460(2) 1	S22	4e	0.3649(3)	-0.0632(3)	0.2015(2)	0.0425(2)	1
	S23	4 <i>e</i>	0.8831(4)	-0.5067(3)	0.5727(2)	0.0460(2)	1

			3			
Atom	Wyckoff	x	Y	Z	U_{eq}	Осси
Ba1	8 <i>d</i>	1.31172(7)	0.53498(3)	0.1191(2)	0.0189(2)	1
Ba2	8 <i>d</i>	1.0230(3)	0.65943(2)	0.0814(2)	0.0208(8)	0.89
Ba2'	8 <i>d</i>	1.016(4)	0.650(4)	0.124(2)	0.028(2)	0.11
Ba3	4 <i>c</i>	0.8615(2)	0.7500	0.6036(2)	0.0236(3)	1
Ba4	8 <i>d</i>	0.6608(2)	0.65341(2)	-0.1025(7)	0.0262(8)	0.93
Ba4'	8 <i>d</i>	0.6550(2)	0.637(2)	-0.048(6)	0.012(9)	0.07
Sn1	4 <i>c</i>	0.7428(2)	0.7500	0.1957(2)	0.0152(3)	1
Sn2	8 <i>d</i>	1.04898(7)	0.44948(4)	0.2012(2)	0.0170(2)	1
S 1	4 <i>c</i>	0.8435(4)	0.7500	-0.0342(6)	0.0187(2)	1
S2	4 <i>c</i>	1.1092(5)	0.7500	-0.1696(7)	0.0320(2)	1
S3	8 <i>d</i>	1.5786(3)	0.5375(2)	0.1855(4)	0.0191(7)	1
S4	4 <i>c</i>	0.5520(4)	0.7500	0.1427(6)	0.0221(2)	1
S5	8 <i>d</i>	1.1367(3)	0.5690(2)	-0.1416(4)	0.0194(7)	1
S6	8 <i>d</i>	0.7799(3)	0.6675(2)	0.3230(5)	0.0277(8)	1
S7	8 <i>d</i>	1.1613(3)	0.4304(2)	-0.0104(4)	0.0214(7)	1

	1					
Ba1–S1	3.192(2)	Sn1–S1	2.252(2)			
Ba1–S2	3.205(2)	Sn1–S3	2.282(2)			
Ba1–S1	3.218(2)	Sn1–S2	2.306(2)			
Ba1–S3	3.247(2)	Sn1–S2	2.339(2)			
Ba1–S1	3.259(2)	Sn2–S3×4	2.314(2)			
Ba1–S1	3.288(2)					
Ba1–S2	3.323(2)					
Ba1–S3	3.598(2)					

Table S2. Selected Bond Lengths (\AA) of compound 1, 2 and 3.

	2				
Ba1–S9	3.120(3)	Ba6–S16	3.197(4)	Ba10-S21	3.368(4)
Ba1–S19	3.163(3)	Ba6–S23	3.239(4)	Ba10-S23	3.428(5)
Ba1–S4	3.189(4)	Ba6–S6	3.285(3)	Ba10-S15	3.549(4)
Ba1–S8	3.197(3)	Ba6–S7	3.295(4)	Ba10-S22	3.644(6)
Ba1–S3	3.203(3)	Ba6–S18	3.362(4)	Ba11–S18	3.115(4)
Ba1–S1	3.237(3)	Ba6–S22	3.149(4)	Ba11–S2	3.163(3)
Ba1–S2	3.248(3)	Ba6–S1	3.169(3)	Ba11–S23	3.179(5)
Ba1–S9	3.254(3)	Ba6–S5	3.417(3)	Ba11–S21	3.235(4)
Ba2–S6	3.089(3)	Ba7–S4	3.111(3)	Ba11–S4	3.340(4)
Ba2–S12	3.169(3)	Ba7–S10	3.122(3)	Ba11–S9	3.569(4)
Ba2–S20	3.186(4)	Ba7–S18	3.204(4)	Ba12-S13	3.199(4)
Ba2–S13	3.189(4)	Ba7–S8	3.350(4)	Ba12–S14	3.296(4)

Ba2–S21	3.225(3)	Ba7–S15	3.359(3)	Ba12-S19	3.298(4)
Ba2–S12	3.277(4)	Ba7–S22	3.384(5)	Ba12-S20	3.300(6)
Ba2–S16	3.279(5)	Ba7–S17	3.401(4)	Ba12-S11	3.362(3)
Ba2–S15	3.449(3)	Ba7–S3	3.487(4)	Ba12-S14	3.399(6)
Ba3–S14	3.026(4)	Ba8–S11	3.141(4)	Ba12-S12	3.523(5)
Ba3–S10	3.078(4)	Ba8–S18	3.173(5)	Ba'–S14	2.88(3)
Ba3–S7	3.097(3)	Ba8–S20	3.280(7)	Ba'–S13	2.96(2)
Ba3–17	3.166(3)	Ba8–S19	3.338(5)	Ba'–S11	3.30(2)
Ba3–S8	3.167(3)	Ba8–S16	3.372(5)	Ba'–S19	3.32(2)
Ba3–S11	3.241(3)	Ba8–S3	3.610(5)	Ba'–S14	3.43(2)
Ba3–S20	3.404(4)	Ba8–S5	3.616(4)	Ba'-S11	3.44(2)
Ba4–S10	3.189(3)	Ba8'-S19	3.22(2)	Sn1–S22	2.331(4)
Ba4–S11	3.229(3)	Ba8'–S11	3.25(3)	Sn1–S8	2.362(3)
Ba4–S2	3.264(3)	Ba8'–S16	3.54(3)	Sn1–S17	2.389(3)
Ba4–S5	3.274(4)	Ba8'–S18	2.89(4)	Sn1–S15	2.398(3)
Ba4–S6	3.318(4)	Ba8'–S9	3.27(6)	Sn2–S9	2.336(3)
Ba4–S13	3.404(4)	Ba8'–S3	3.38(3)	Sn2-S14	2.356(4)
Ba4–S3	3.471(4)	Ba9–S1	3.201(3)	Sn2–S21	2.369(4)
Ba4–S7	3.483(4)	Ba9–S5	3.228(3)	Sn2-S11	2.395(3)
Ba5–S13	3.144(4)	Ba9 S15	3.249(3)	Sn3–S7	2.357(3)
Ba5–S1	3.166(3)	Ba9–S20	3.292(4)	Sn3–S6	2.363(3)
Ba5–S15	3.245(3)	Ba9–S3	3.367(4)	Sn3–S3	2.367(3)
Ba5–S17	3.253(4)	Ba9–S7	3.394(4)	Sn3–S5	2.381(3)
Ba5–S10	3.408(3)	Ba9–S6	3.512(3)	Sn4–S23	2.340(4)
Ba5–S8	3.503(4)	Ba9–S17	3.566(4)	Sn4–S16	2.345(4)
Ba5–S22	3.598(4)	Ba10–S4	3.108(3)	Sn4–S12	2.356(3)
Ba5–S23	3.643(5)	Ba10-S20	3.228(4)	Sn4–S19	2.371(4)
Ba6–S2	3.184(4)	Ba10-S12	3.355(4)		

	3					
Ba1–S8	3.227(4)	Ba3–S4	3.216(5) 3.221(5)			
Ba1–S6	3.268(4)	Ba3–S1				
Ba1–S5	3.275(4)	Ba3–S6×2	3.346(5)			
Ba1–S7	3.344(4)	Ba3–S2	3.669(7)			
Ba1–S5	3.352(4)	Ba4–S5	3.067(4)			
Ba1–S3	3.359(4)	Ba4–S2	3.155(8)			
Ba1–S3	3.368(4)	Ba4–S7	3.156(5)			
Ba1–S7	3.409(4)	Ba4–S8	3.208(5)			
Ba1–S3	3.494(4)	Ba4–S1	3.308(5)			
Ba2–S7	3.212(5)	Ba4–S4	3.463(4)			
Ba2–S5	3.267(7)	Ba4'–S7	2.85(4) 3.13(2)			
Ba2–S1	3.284(7)	Ba4'–S8				
Ba2–S6	3.299(6)	Ba4'–S5	3.22(3)			
Ba2–S2	3.30(2)	Ba4'- S3	3.32(7)			
Ba2–S4	3.304(9)	Ba4'–S4	3.45(2)			
Ba2–S3	3.667(9)	Ba4'–S1	3.59(4)			
Ba2'–S7	3.10(6)	Sn1–S6×2	2.338(4)			
Ba2'–S4	3.21(3)	Sn1–S1	2.391(5)			
Ba2'–S3	3.30(2)	Sn1–S4	2.410(5)			
Ba2'–S6	3.33(5)	Sn2–S3	2.381(3)			
Ba2'–S5	3.41(4)	Sn2–S7	2.381(4)			
Ba2'–S6	3.44(8)	Sn2–S8	2.383(4)			
Ba2'–S1	3.52(7)	Sn2–S5	2.402(4)			
Ba3–S8×2	3.167(4)					
Ba3–S2	3.179(7)					

Figure S1. Experimental and simulated powder X-ray diffraction (XRD) data for compound **1** (a), **2** (b) and **3** (c).

Figure S2. The original UV diffuse reflection spectra for compound 1, 2 and 3.

Figure S3. The SHG vs particle size patterns of compounds 1 and $AgGaS_2$ (reference)

at 2.05µm.

Figure S4. The TGA patterns of compounds 1 under N_2 flow.

Figure S5. Calculated band structures of compound 2 (a) and 3 (b).

Figure S6. Energy dependences of the real part (ϵ_1) and imaginary part (ϵ_2) of

compound 1.

Figure S7. the calculated (a) refractive index $n(\omega)$, (b) reflectivity $R(\omega)$ and (c)

absorption coefficient $I(\omega)$ and (d) birefringence (Δn) of compound 1.