Supporting Information

Novel core-shell-like nanocomposites xCu@Cu₂O/MgAlO-rGO through in situ self-

reduction strategy for highly efficient reduction of 4-nitrophenol

Liguang Dou, Yanna Wang, Yangguang Li and Hui Zhang*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

*Correspondence should be addressed to Hui Zhang. E-mail: Huizhang67@gst21.com Tel.: +8610 64425872 Fax: +8610 64425385

Figure S1. (A) XRD patterns of the as-prepared hybrid precursors $Cu_{0.5}Mg_{2.5}Al-LDH/rGO$ (a), $Cu_1Mg_2Al-LDH/rGO$ (b), $Cu_{1.5}Mg_{1.5}Al-LDH/rGO$ (c) pure CuMgAl-LDH (d) and GO. (B-D) TEM images of $Cu_{0.5}Mg_{2.5}Al-LDH/rGO$ (B), $Cu_1Mg_2Al-LDH/rGO$ (C) and $Cu_{1.5}Mg_{1.5}Al-LDH/rGO$ (D).

Figure S2. (A) FTIR and (B) Raman spectra of the precursors Cu_{0.5}Mg_{2.5}Al-LDH/rGO (a), Cu₁Mg₂Al-LDH/rGO (b), Cu_{1.5}Mg_{1.5}Al-LDH/rGO (c) and CuMgAl-LDH (d).

Figure S3. Low-magnification (A) SEM and (B) TEM images of typical 1.0Cu@Cu₂O/MgAlO-rGO.

Figure S4. The particle size distribution of 0.5Cu@Cu₂O/MgAlO-rGO (A), 1.0Cu@Cu₂O/MgAlO-rGO (B) and 1.5Cu@Cu₂O/MgAlO-rGO (C).

Figure S5. The (A) SEM, (B) TEM and (C) HRTEM images of 1.0CuMgAlO.

Figure S6. C 1s, Mg 1s, and Al 2p XPS spectra of 0.5Cu@Cu₂O/MgAlO-rGO (a), 1.0Cu@Cu₂O/MgAlO-rGO (b), Cu₁Mg₂Al-LDH/rGO (b'), 1.5Cu@Cu₂O/MgAlO-rGO (c), 1.0CuMgAlO (d) and rGO.

Figure S7. Low temperature N₂ adsorption-desorption isotherms (A-D) and BJH pore size distributions (A'-D') of 0.5Cu@Cu₂O/MgAlO-rGO (A, A'), 1.0Cu@Cu₂O/MgAlO-rGO (B, B'), 1.5Cu@Cu₂O/MgAlO-rGO (C, C') and 1.0CuMgAlO (D, D').

Figure S8. Evidence of π - π stacking: (A) fluorescence quenching of pyrene-contaminated water by adding 1.0Cu@Cu₂O/MgAlO-rGO suspensions with varied concentrations (46.8-750 µg/mL). Conditions: $\lambda_{ex} = 335$ nm; initial concentration of pyrene = 90.0 ppb; adsorption time: 1.0 min. (B) Time-dependent adsorption percentage of pyrene by 1.0Cu@Cu₂O/MgAlO-rGO on fluorescence analyses (nanocomposite: 750 µg/mL). (C) Digital photo of RhB solution with the hybrid 1.0Cu@Cu₂O/MgAlO-rGO and 1.0CuMgAlO under UV light (365 nm). Conditions: RhB, 836 ppb (2 mL); catalyst, 2.5 mg/mL (1 mL). (D) UV-vis spectra of the centrifuged supernatants in (C)

Figure S9. UV-vis absorption spectra of the reduction and degradation of diverse nitroarenes (A: 2-NP, B: 3-NP, C: 2,4-dinitrotoluene, D: 4-nitrobenzaldehyde, and E: 4-nitroaniline) and organic dyes (F: MB, G: RhB, H: MO and I: AO7) by NaBH₄ with the catalyst 1.0Cu@Cu₂O/MgAlO-rGO, and plots of $ln(C_t/C_0)$ versus time for the reduction of MB, RhB, MO and AO7 over 1.0Cu@Cu₂O/MgAlO-rGO.

Figure S10. The color change of the MB (A), RhB (B), MO (C) and AO7 (D) when catalyzed by the 1.0Cu@Cu₂O/MgAlO-rGO in the presence of NaBH₄.

Figure S11. (A) TEM and (B) HRTEM images of 1.0Cu@Cu₂O/MgAlO-rGO recovered from the 25th cycle of the catalytic reduction of 4-NP (inset in A, the particle size distribution on more than 300 particles; inset in B, the corresponding FFT pattern).

Figure S12. Photographs showing the setup and the complete reduction of 3 mL of the mixture of 4-NP (1 mM) and MO (1 mM) in 18 s by $1.0Cu@Cu_2O/MgAlO-rGO$. The total Cu in the column is 6.68 mg.

Samples	Bulk Cu Surface Cu		\mathbf{D}_{i} /mm (Cu) (\mathbf{D}_{n}	D ₁₁₁ /nm	S _{BET}
	/wt% ^a	/wt% ^b	$D_{111}/\min(Cu)^{-1}$	$D_{200}/\min(Cu)^{-1}$	$(Cu_2O)^d$	$/m^2g^{-1}e$
0.5Cu@Cu ₂ O/MgAlO-rGO	10.76	5.23	8.5	-	10.2	199.3
1.0Cu@Cu ₂ O/MgAlO-rGO	19.09	7.42	12.5	13.4	12.9	159.8
1.5Cu@Cu ₂ O/MgAlO-rGO	27.70	9.43	17.4	16.4	18.2	157.6
1.0CuMgAlO	21.30	15.50	-	-	-	125.2

Table S1. Chemical composition and structural data for *x*Cu@Cu₂O/MgAlO-rGO and 1.0CuMgAlO.

^{*a*} Determined by ICP analysis ^{*b*} Determined by XPS analysis. ^{*c*} Based on XRD line broadening of (111) plane at 43.3° and (200) plane at 50.4° for cubic Cu. ^{*d*} Based on XRD line broadening of (111) plane at 36.4° for cubic Cu₂O. ^{*e*} BET surface area.

Table S2. Catalyzing reduction and degradation of diverse nitroarenes and organic dyes over 1.0Cu@Cu₂O/MgAlO-rGO.

Entry	Substrate	Time (min) ^a	TOF (h ⁻¹)
1	NO ₂ OH	0.5	399.2
2	NO2 OH	0.25	798.3
3	CH ₃ NO ₂	1.0	199.6
4	NO ₂ CHO	0.75	266.1

