Supporting Information

Design of Synthetic Superoxide Dismutase Mimetics: Seven-Coordinate Water Soluble Manganese(II) and Iron(II) Complexes and Their Superoxide Dismutase Like Activity Studies

Ovender Singh^a, Nidhi Tyagi^a, Marilyn M. Olmstead^b, Kaushik Ghosh^a*

^aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667

Uttarakhand INDIA. Fax: +91-1332-273560; Tel+91-1332-275547

E-mail: ghoshfcy@iitr.ernet.in

^bDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616,

USA.

S.No.	Contents					
Chart S1	Schematic diagram of superoxide dismutase activity					
Fig. S1	IR spectrum of ligand N₅Py	3				
Fig. S2	UV-visible spectrum of ligand N ₅ Py	4				
Fig. S3	¹ H NMR spectra of ligand N ₅ Py in CDCl ₃ Synthesis of complexes:	4				
Fig. S4	HRMS spectra of ligand N_5 Py in acetonitrile	5				
Fig.S5	IR spectra of complex 1	5				
Fig.S6	UV-visible spectra of complex $1[Mn(N_5Py)(H_2O)(CH_3OH)](ClO_4)$					
Fig. S7	Cyclic voltammograms of a 10 ⁻³ M solution of complex 1 in DMSO					
	in presence of 0.1 M tetrabutylammonium perchlorate (TBAP),					
	using working electrode: glassy-carbon, reference electrode:					
	Ag/AgCl; auxiliary electrode:platinum wire, scan rate 0.1 Vs ⁻¹ .					
Fig. S8	IR spectrum of complex 2					
Fig. S9	UV-visible spectrum of complex 2 , $[Fe(N_5Py)(H_2O)(ClO_4)]ClO_4$.					
Fig. S10	Cyclic voltammograms of a 10 ⁻³ M solution of complex 2 in DMSO	8				
	in presence of 0.1 M tetrabutylammonium perchlorate (TBAP),					
	using working electrode: glassy-carbon, reference electrode:					
	Ag/AgCl; auxiliary electrode:platinum wire, scan rate 0.1 Vs ⁻¹ .					

Table of contents:

Table S1.	Electrochemical data for M ^{II} /M ^{III} redox couple 298 K ^a vs Ag/ AgCl.			
	(M = Mn and Fe)			
Table S2.	Crystallographic parameters of complex 1 and 2	9		
Table S3.	Selected bond distances (Å) of complex 1	10		
Table S4.	Selected bond distances (Å) of complex 2	10		
Table S5.	Selected bond angels(°)	10		
Fig. S11	Packing diagram of complex ${\bf 1}$ showing the short interaction and	11		
	hydrogen bonding with the neighbor atoms.			
Fig. S12	Packing diagram of Complex 2 showing the short interaction and	11		
	hydrogen bonding with the neighbor atoms.			
Fig . S13	Ground state optimized geometry of complex	12		
	1usingB3LYP/LANL2DZ.			
Table S6	Cartesian coordinates for complex 1	12		
Table S7	Percentage contribution of complex 1 in different orbitals	15		
Fig . S14	UV-visible spectrum of complex 1 experimental as well as	16		
	theoretical calculation			
Table S8.	Major transition along with their orbital contribution in complex 1	16		
Fig. S15	Frontier molecular orbitals of complex1 showing significant	17		
	contribution of manganese and ligand (N_5Py) in molecular orbitals.			
Fig. S16	Ground state optimized geometry of complex			
	2usingB3LYP/LANL2DZ.			
Table S9.	Cartesian coordinates for complex 2	18		
Fig. S17	UV-visible spectrum of complex 2 experimental as well as	21		
	theoretical calculation			
Table S10.	Major transition along with their orbital contribution in complex 2	22		
Table S11	Percentage contribution of complex 2 in different orbitals	23		
Fig. S18	Frontier molecular orbitals of complex 2 showing significant	24		
0	contribution of iron and ligand (N ₅ Py) in molecular orbitals.			

Chart S1. Schematic diagram of superoxide dismutase activity.

Fig. S1 IR spectrum of ligand N_5Py

Fig. S2 UV-visible spectrum of ligand N_5Py

Fig. S3 ¹H NMR spectra of ligand N_5 Py in CDCl₃

Fig. S4HRMS spectra of ligand N₅Pyin acetonitrile

Fig. S5 IR spectrum of complex 1

Fig. S6UV-visible spectrum of complex 1 [Mn(N₅Py)(H₂O)(CH₃OH)](ClO₄)₂

Fig. S7 Cyclic voltammograms of a 10⁻³ M solution of complex **1** in DMSO in presence of 0.1 M tetrabutylammonium perchlorate (TBAP), using working electrode: glassy-carbon, reference electrode: Ag/AgCl; auxiliary electrode:platinum wire, scan rate 0.1 Vs⁻¹.

Fig. S8 IR spectrum of complex 2

Fig. S9UV-visible spectrum of complex2, $[Fe(N_5Py)(H_2O)(ClO_4)]ClO_4$.

Fig. S10 Cyclic voltammograms of a 10⁻³ M solution of complex **2** in DMSO in presence of 0.1 M tetrabutylammonium perchlorate (TBAP), using working electrode: glassy-carbon, reference electrode: Ag/AgCl; auxiliary electrode:platinum wire, scan rate 0.1 Vs⁻¹.

Table S1. Electrochemical data for $M^{\parallel}/M^{\parallel}$ redox couple 298 K ^a vs Ag/ AgCl. (M = Mn and Fe)				
Complexes	M ¹¹ /M ¹¹¹			
	E _{pa} /V	E _{pc} /V	E _{1/2} ^b ,V (ΔE _p ^c , mV)	^d n = i _{Pa} /i _{Pc}
1	1.14	•••••		
2	1.01	0.92	0.96(90)	2.068
^[a] Electrochemical data measured in DMSO with 0.1m tetrabutylammonium perchlorate				
(TBAP). $^{\rm [b]}\mbox{Data}$ from cyclic voltammetric measurements; $E_{1/2}$ is calculated as average of				
anodic (E_{pa}) and cathodic (E_{pc}) peak potentials $E_{1/2}=1/2(E_{pa}+E_{pc})$; and $[c] \Delta Ep = E_{pa} - E_{pc}$ at scan				
rate 0.1 Vs ⁻¹ , ^[d] Constant-potential coulometric data $n=i_{pa}/i_{pc}$ calculated for 1e ⁻ transfer.				

Complex	Complex 1	Complex 2	
Colour	Orange	Red	
Empirical formula	C30 H29 Mn N7 O2, 2(Cl	C29 H25 Cl Fe N7 O5, (Cl	
	O4)	O4)	
Formula weight [g mol ⁻¹]	773.44	742.31	
Temperature [K]	90(2)	296(2)	
λ [Å] (Mo-Kα)	0.71073	0.71073	
Crystal system	triclinic	monoclinic	
Space group	P-1	P21/n	
a [Å]	9.3017(5)	16.2831(10)	
b [Å]	14.0136(7)	8.1985(5)	
c [Å]	14.6344(8)	24.4790(14)	
α [º]	111.6887(7)	90.00	
β [º]	103.5835(7)	101.909(3)	
γ [º]	100.6113(7)	90.00	
V [ų]	1643.62(15)	3197.5(3)	
Crystal size[mm]	0.440x 0.200x 0.120	0.22x 0.22x 0.22	
Z	2	4	
ρcalc [gcm ⁻³]	1.563	1.542	
F(000)	794	1520	
$\boldsymbol{\theta}$ range for data Collection	2.361-31.501	1.38-27.89	
Index ranges	-13 <h<13,< th=""><th>-21<h<21,< th=""></h<21,<></th></h<13,<>	-21 <h<21,< th=""></h<21,<>	
	-20 <k<21, -21<l<21<="" th=""><th>-10<k<10, -32<l<32<="" th=""></k<10,></th></k<21,>	-10 <k<10, -32<l<32<="" th=""></k<10,>	
Refinement method	Full matrix least-squares on	Full matrix least-squares	
	F ²	on F ²	
Data/restraints/parameters	10848/4/511	7637/0/441	
GOF on F ²	1.057	1.094	
R ₁ ^b [I>2σ(I)]	0.0326	0.0431	
R ₁ [all data]	0.0344	0.0710	
wR₂ ^c [I> 2σ(I)]	0.0872	0.1239	
wR ₂ [all data]	0.0857	0.1490	
^a GOF = $[\Sigma[w(F_o^2-F_c^2)^2]/M-N)]^{1/2}$ (M = number of reflections, N = number of parameters			
refined). ${}^{b}R_{1} = \Sigma \ F_{o} - F_{c} / \Sigma F_{o} , {}^{c}wR_{2} = [\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{1/2}$			

 Table S2.Crystallographic parameters of complex 1 and 2

Table S3.Selected bond distances (Å) of complex 1				
Bond type	Experimental	Theoretical		
Mn1-01	2.154(4)	2.244		
Mn1-02	2.220(5)	2.250		
Mn1-N4	2.311(4)	2.328		
Mn1-N2	2.321(3)	2.336		
Mn1-N7	2.341(4)	2.395		
Mn1-N6	2.356(4)	2.359		
Mn1-N1	2.394(2)	2.378		

Table S4. Selected bond distances (Å) of complex 2			
Bond type	Experimental	Theoretical	
Fe1-O10	2.137 (3)	2.137	
Fe1-N5	2.218 (4)	2.230	
Fe1-N6	2.222 (4)	2.221	
Fe1-N7	2.231 (4)	2.218	
Fe1-04	2.276 (3)	2.275	
Fe1-N4	2.286 (3)	2.306	
Fe1-N3	2.306(3)	2.285	

Table S5	Table S5.Selected bond angels(°)			
Complex 1		Complex 2		
1	01-Mn1-02	173.03(13)	O10-Fe1-N6	88.95(10)
2	01—Mn1—N4	97.68(13)	O10-Fe1-N5	94.21(10)
3	02—Mn1—N4	87.68(10)	N6—Fe1—N5	69.50(9)
4	01-Mn1-N2	84.58(14)	O10-Fe1-N7	86.22(10)
5	02—Mn1—N2	93.42(10)	N6—Fe1—N7	69.33(8)
6	N4-Mn1-N2	67.68(9)	N5—Fe1—N7	138.81(9)
7	01—Mn1—N7	83.79(13)	010-Fe1-04	171.92(9)
8	02—Mn1—N7	95.7(1)	N6—Fe1—O4	88.12(9)
9	N4-Mn1-N7	134.00(9)	N5-Fe1-O4	77.71(9)
10	N2-Mn1-N7	156.7(1)	N7—Fe1—O4	99.76(9)
11	01-Mn1-N6	105.33(14)	O10-Fe1-N4	104.67(10)
12	02—Mn1—N6	80.84(11)	N6—Fe1—N4	136.99(9)
13	N4—Mn1—N6	66.78(10)	N5—Fe1—N4	146.39(9)
14	N2-Mn1-N6	134.26(11)	N7—Fe1—N4	71.10(9)
15	N7—Mn1—N6	68.55(10)	O4—Fe1—N4	82.53(9)
16	01-Mn1-N1	90.79(13)	O10-Fe1-N3	80.69(10)
17	02—Mn1—N1	82.25(10)	N6—Fe1—N3	138.43(8)
18	N4-Mn1-N1	135.35(10)	N5—Fe1—N3	71.27(8)
19	N2-Mn1-N1	69.66(10)	N7—Fe1—N3	148.33(9)
20	N7-Mn1-N1	90.38(10)	O4—Fe1—N3	96.58(9)
21	N6-Mn1-N1	151.34(10)	N4—Fe1—N3	84.46(9)

Fig. S11Packing diagram of complex **1** showing the short interaction and hydrogen bonding with the neighbor atoms.

Fig. S12Packing diagram of Complex **2**showing the short interaction and hydrogen bonding with the neighbor atoms.

Theoretical calculation:

Fig . S13Ground state optimized geometry of complex 1 usingB3LYP/LANL2DZ.

Table S6.Cartesian coordinates for complex 1

Atomtypes=5

Charge=25.0 Atoms=1

Mn 0.011929000 0.849144000 -0.091194000

Charge=8.0 Atoms=2

O 0.316859000 (.906711000	-2.313883000
-----------------	------------	--------------

O -0.226238000 0.612828000 2.134154000

Charge=7.0 Atoms=7

N 1.571843000 2.570788000 0.4172170

- N 2.175361000 -0.033833000 -0.100682000
- N 2.351062000 -1.393556000 -0.243956000
- N 0.004698000 -1.479282000 -0.056050000
- N -2.344122000 -1.389811000 0.083616000

 $N \quad -2.173418000 \quad -0.039425000 \quad -0.121373000$

N -1.573020000 2.527772000 -0.731154000

Charge=6.0 Atoms=30

С	-0.256089000	1.507914000	3.311197000
С	1.304770000	3.844002000	0.803615000
С	2.304708000	4.811411000	1.012860000
С	3.648332000	4.449246000	0.805948000
С	3.940950000	3.127526000	0.429302000
С	2.886403000	2.206951000	0.256551000
С	3.178106000	0.796750000	-0.021021000
С	1.172635000	-2.167815000	-0.169020000
С	1.217253000	-3.575277000	-0.202853000
С	0.000007000	-4.268004000	-0.101490000
С	-1.216176000	-3.574764000	0.010603000
С	-1.167544000	-2.167113000	0.013969000
С	-3.177848000	0.790328000	-0.181439000
С	-2.888235000	2.186235000	-0.526143000
С	-3.935153000	3.110376000	-0.722778000
С	-3.633941000	4.405572000	-1.178224000
С	-2.291731000	4.738254000	-1.441403000
С	-1.297272000	3.772867000	-1.199432000
С	3.673166000	-1.997871000	-0.304882000
С	4.269625000	-2.236721000	-1.557874000
С	5.552665000	-2.813065000	-1.612292000
С	6.229898000	-3.141996000	-0.421019000
С	5.625389000	-2.897816000	0.828986000

С	4.342998000	-2.322622000	0.891973000
С	-3.663632000	-1.991302000	0.202933000
С	-4.228354000	-2.175857000	1.479376000
С	-5.508463000	-2.750712000	1.590059000
С	-6.214100000	-3.131677000	0.431177000
С	-5.641527000	-2.939922000	-0.842832000
С	-4.362197000	-2.366734000	-0.962192000
Cha	rge=1.0 Atoms=2	9	
Н	-0.330800000	1.357996000	-2.887969000
Н	0.991019000	0.432831000	-2.836287000
Н	-0.294454000	-0.326026000	2.398959000
Н	-1.231191000	1.448439000	3.806080000
Н	-0.092343000	2.516865000	2.935052000
Н	0.544581000	1.242591000	4.009485000
Н	0.261274000	4.097214000	0.955059000
Н	2.032018000	5.812966000	1.327913000
Н	4.446244000	5.171868000	0.946585000
н	4.968133000	2.806313000	0.284033000
Н	4.218333000	0.483364000	-0.086696000
Н	2.156848000	-4.103500000	-0.295970000
Н	-0.001419000	-5.353658000	-0.115853000
н	-2.158225000	-4.102469000	0.077973000
Н	-4.214584000	0.487073000	-0.049726000
Н	-4.962748000	2.811090000	-0.538951000
Н	-4.426179000	5.130134000	-1.339762000
Н	-2.017142000	5.715793000	-1.823162000

Н	-0.254052000	3.996505000	-1.393597000
Н	3.737297000	-1.989943000	-2.473156000
Н	6.017259000	-3.008603000	-2.574288000
Н	7.218570000	-3.589545000	-0.466199000
Н	6.146469000	-3.158627000	1.745529000
Н	3.867312000	-2.139649000	1.852539000
Н	-3.675746000	-1.884887000	2.369196000
Н	-5.949292000	-2.904175000	2.570725000
Н	-7.200271000	-3.578223000	0.520073000
Н	-6.184599000	-3.239934000	-1.734277000
Н	-3.910199000	-2.224281000	-1.940888000

Table S7. Percentage contribution of complex 1 in different orbitals

Alpha molecular orbital percentage contribution											
Orbitals	MeOH	Fe	lmi1	Ph1	Py1	Py2	РуЗ	Ph1	H2O	lmi2	Main
											bond
	0	10	2	22		2		20	0		
LUIVIO+2	0	19	2	33	6	3	5	30	0	1	3α (Fe) + π* L
LUMO+1	0	56	2	10	3	16	2	10	0	21	3d (Fe)
											+ π* L
LUMO	0	16	1	2	1	31	40	6	0	2	3d (Fe)
											+ π*L
номо	0	52	5	1	7	13	15	2	0	5	3d (Fe)
											+πL
HOMO-1	0	62	4	6	5	6	7	5	0	5	3d (Fe)
											+πL
HOMO-2	0	55	5	0	2	17	16	0	0	4	3d (Fe)
											+πL
		Beta r	nolecul	ar orbi	tal per	centag	e cont	ributio	n		
LUMO+2	0	55	5	0	2	17	16	0	0	4	3d (Fe)
											+ π* L
LUMO+1	0	32	11	0	19	11	14	0	0	13	3d (Fe)
											+ π* L
LUMO	1	47	10	0	4	15	14	0	0	8	3d (Fe)
											+ π*L
номо	0	0	24	1	35	7	7	1	0	25	πL
HOMO-1	0	1	31	2	14	10	10	2	0	31	3d (Fe)
											+πL
HOMO-2	0	0	7	2	31	24	25	2	0	7	πL

Fig. S14 UV-visible spectrum of complex 1 experimental as well as theoretical calculationTable S8. Major transition along with their orbital contribution in complex 1

λ _{max} (nm)	f (Osc.	Transition and their contributions				
	Strength)					
291	0.0011	H-8(A)→L+1(A) (34%),				
		H-7(A)→L+1(A) (32%),				
		H-2(A)→L+1(A) (15%)				
		H-6(A)→LUMO(A) (6%),				
		H-6(A)→L+1(A) (2%)				
351	0.0041	H-6(A)→L+1(A) (17%),				
		H-3(A)→L+1(A) (37%),				
		H-2(A)→LUMO(A) (20%)				
		H-8(A)→LUMO(A) (6%),				
		H-4(A)→L+1(A) (4%),				
		H-2(A)→L+1(A) (2%),				
		H-1(A)→LUMO(A) (2%),				
		H-1(A)→L+1(A) (6%)				
441	0.1134	HOMO(A) →LUMO(A) (50%),				
		HOMO(B)→LUMO(B) (50%)				

Fig.S15Frontier molecular orbitals of complex 1 showing significant contribution of manganese and ligand (N_5 Py) in molecular orbitals.

Fig. S16Ground state optimized geometry of complex 2 using B3LYP/LANL2DZ.

Table S9.Cartesian coordinates for complex 2

Atomtypes=5

Charge=26.0 Atoms=1

Fe -0.033807000 0.783410000 -0.250897000

Charge=8.0 Atoms=1

O 0.400083000 0.944042000 -2.340124000

Charge=7.0 Atoms=7

Ν	2.461994000	-1.078974000	-0.306041000
N	-2.170975000	-1.464527000	0.195516000
N	-1.567985000	2.397015000	-0.783914000
N	0.974047000	2.436019000	0.855091000
N	-2.070650000	-0.111083000	-0.038826000
N	0.147236000	-1.387439000	-0.086803000
N	2.112550000	0.221030000	-0.016094000

Charge=6.0 Atoms=29

С	1.368054000	-1.972116000	-0.231476000
С	2.954961000	1.158997000	0.313696000
С	2.350257000	2.398623000	0.815548000
С	-0.885539000	-3.569350000	0.090808000
С	-2.873468000	2.056815000	-0.527224000
С	-3.445364000	-2.122898000	0.430417000
С	-3.113414000	0.673090000	-0.115279000
С	1.527519000	-3.367647000	-0.267094000
С	-3.930886000	2.968520000	-0.719260000
С	0.372323000	3.478270000	1.482525000
С	-3.644601000	4.253579000	-1.214014000
С	3.846415000	-1.528823000	-0.289852000
С	-2.308709000	4.591140000	-1.505071000
С	5.788667000	-2.306761000	0.945155000
С	5.909047000	-2.011880000	-1.478375000
С	3.135103000	3.439526000	1.344786000
С	-4.202119000	-2.586794000	-0.664679000
С	-3.904190000	-2.276182000	1.753114000
С	6.518790000	-2.370026000	-0.259553000
С	4.566965000	-1.587546000	-1.497291000
С	-5.436636000	-3.218144000	-0.426107000

С	-5.905146000	-3.378127000	0.894080000	
С	1.096210000	4.533483000	2.066451000	
С	2.500146000	4.524482000	1.976441000	
С	-5.140516000	-2.908795000	1.981194000	
С	-1.301674000	3.637086000	-1.267618000	
С	-0.956552000	-2.164966000	0.070704000	
С	4.447184000	-1.884107000	0.935891000	
С	0.376726000	-4.157812000	-0.095615000	
Cha	rge=1.0 Atoms=2	25		
н	4.034617000	1.029413000	0.337338000	
н	-1.773093000	-4.172159000	0.231556000	
н	-4.131284000	0.326030000	0.045643000	
н	2.503681000	-3.816215000	-0.397669000	
н	-4.951509000	2.671876000	-0.496708000	
н	-0.710458000	3.465440000	1.519857000	
н	-4.443447000	4.970818000	-1.375105000	
н	-2.047682000	5.566473000	-1.901584000	
н	6.259267000	-2.589934000	1.882113000	
н	6.471407000	-2.068572000	-2.405666000	
н	4.217913000	3.387595000	1.282783000	
н	-3.829318000	-2.468254000	-1.679394000	
н	-3.302735000	-1.918638000	2.585072000	

Н	7.553276000	-2.700920000	-0.248563000
н	4.086478000	-1.321685000	-2.435463000
н	-6.024976000	-3.587500000	-1.260924000
Н	-6.856848000	-3.869701000	1.074269000
н	0.568610000	5.335436000	2.571222000
Н	3.087003000	5.333398000	2.400587000
Н	-5.501008000	-3.039653000	2.997205000
Н	1.170882000	0.553808000	-2.793664000
Н	-0.246589000	1.310001000	-2.973209000
Н	-0.259370000	3.870692000	-1.460813000
Н	3.876464000	-1.843006000	1.860815000
н	0.466189000	-5.239850000	-0.101710000

Fig. S17UV-visible spectrum of complex 2 experimental as well as theoretical calculation

λ _{max} (nm)	f (Osc. Strength)	Transition and their contributions
293	0.0534	HOMO(A)→L+3(A) (31%),
		HOMO(B)→L+6(B) (51%)
		H-11(A)→LUMO(A) (2%),
		H-10(A)→L+1(A) (2%)
347	0.1799	H-5(A)→LUMO(A) (22%),
		H-4(A)→LUMO(A) (12%)
		H-3(A)→L+1(A) (2%),
		H-2(A)→L+1(A) (5%),
		HOMO(A)→L+1(A) (2%),
		HOMO(A)→L+2(A) (2%),
		H-8(B)→LUMO(B) (2%),
		H-6(B)→LUMO(B) (9%),
		H-6(B)→L+1(B) (2%),
		H-5(B)→LUMO(B) (9%),
		H-5(B)→L+1(B) (2%),
		H-3(B)→L+1(B) (9%),
		HOMO(B)→L+2(B) (3%)
407	0.0663	H-1(A)→LUMO(A) (12%),
		HOMO(A)→L+1(A) (45%)
		H-5(A)→LUMO(A) (4%),
		H-4(A)→LUMO(A) (6%),
		H-2(A)→LUMO(A) (2%),
		HOMO(A)→LUMO(A) (2%),
		H-6(B)→LUMO(B) (3%),
		H-5(B)→LUMO(B) (4%),
		H-2(B)→LUMO(B) (5%),
		HOMO(B)→L+1(B) (3%),
		HOMO(B)→L+2(B) (5%)

 Table S10. Major transition along with their orbital contribution in complex 2

Alpha molecular orbital percentage contribution										
Orbitals	Py2	Py3	Py1	H2O	Ph2	lmi2	Fe	lmi1	Ph1	Main bond
										type
LUMO+2	49	41	2	0	0	3	2	3	0	3d (Fe) + π* L
LUMO+1	28	20	9	0	0	12	15	16	0	3d (Fe) + π* L
LUMO	14	23	10	1	0	14	26	12	0	3d (Fe) + π*L
НОМО	3	1	4	0	1	2	82	6	1	3d (Fe) + π L
HOMO-1	1	6	4	1	0	3	84	1	0	3d (Fe) + π L
HOMO-2	8	5	4	1	0	7	71	4	0	3d (Fe) + π L
	Beta molecular orbital percentage contribution									
LUMO+2	1	6	4	1	0	3	84	1	0	3d (Fe) + π* L
LUMO+1	9	5	4	1	0	7	71	4	0	3d (Fe) + π* L
LUMO	3	2	2	1	0	3	88	1	0	3d (Fe) + π*L
НОМО	4	4	2	0	0	3	84	4	0	3d (Fe) + π L
HOMO-1	7	7	38	0	1	24	0	22	1	πL
HOMO-2	11	10	13	0	2	29	2	31	2	3d (Fe) + π L

Table S11.Percentage contribution of complex 2 in different orbitals

Fig.S18Frontier molecular orbitals of complex 2 showing significant contribution of iron and ligand (N_5Py) in molecular orbitals.

-:END:-