Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supplementary information for

Tethered cationic alkaline earth - olefin complexes

Sorin-Claudiu Roșca, Vincent Dorcet, Thierry Roisnel,

Jean-François Carpentier*, and Yann Sarazin*

Université de Rennes 1, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Campus de Beaulieu, F-35042 Rennes Cedex, France. E-mail: jean-francois.carpentier@univ-rennes1.fr; yann.sarazin@univ-rennes1.fr; Fax: (+33) 2 23 23 69 39; Tel: (+33) 2 23 23 30 19

Table of Contents

¹ H and ¹⁹ F NMR spectra for complexes 1 , 2 , 3a and 4a	S1-S9
Structure of $[({\mu^2-RO^F}Ca^{\bullet}(H_2O))_2]^{2+}.2[H_2N{B(C_6F_5)_3}_2]^-$ obtained from 3a	S10
Structure of $[({\mu^2-RO^F}Ca \cdot (Et_2O))_2]^{2+}.2[H_2N\{B(C_6F_5)_3\}_2]^-$ obtained from 3a	S11

Figure S1. ¹H NMR spectrum (400.13 MHz) of $\{RO^F\}H$ at 298 K in benzene- d_6 .

Figure S2. ¹H NMR spectrum (400.13 MHz) of $[{\mu^2-RO^F}CaN(SiMe_2H)_2]_2$ (1) at 298 K in C₆D₆.

Figure S3. ¹⁹F NMR spectrum (376.49 MHz) of $[{\mu^2-RO^F}CaN(SiMe_2H)_2]_2$ (1) at 298 K in C₆D₆.

Figure S4. ¹H NMR spectrum (400.13 MHz) of $[{\mu^2-RO^F}SrN(SiMe_2H)_2]_2$ (2) at 298 K in C₆D₆.

-76.3 -76.5 -76.7 -76.9 -77.1 -77.3 -77.5 -77.7 -77.9 -78.1 -78.3 -78.5 -78.7 -78.9 -79.1 -79.3 -79.5 -79.7 -79.9 **Figure S5.** ¹⁹F NMR spectrum (376.49 MHz) of $[\{\mu^2 - RO^F\}SrN(SiMe_2H)_2]_2$ (2) at 298 K in C₆D₆.

Figure S6. ¹H NMR spectrum (400.13 MHz) of $[(\{\mu^2 - RO^F\}Ca^{\bullet}(Et_2O)_2)_2]^{2+}.2[H_2N\{B(C_6F_5)_3\}_2]^{-}$ (**3a**) at 298 K in dichloromethane- d_2 .

Figure S8. ¹H NMR spectrum (400.13 MHz) of $[({\mu^2-RO^F}Sr \cdot (Et_2O)_2)_2]^{2+} \cdot 2[H_2N \{B(C_6F_5)_3\}_2]^{-}$ (4a) at 298 K in dichloromethane- d_2 .

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 **Figure S9**. ¹⁹F NMR spectrum (376.47 MHz) of $[(\{\mu^2-RO^F\}Sr^{\bullet}(Et_2O)_2)_2]^{2+}.2[H_2N\{B(C_6F_5)_3\}_2]^{-}$ (4a) at 298 K in dichloromethane- d_2 .

Figure S10. Molecular structures of the cation in $[({\mu^2-RO^F}Ca \cdot (H_2O))_2]^{2+}.2[H_2N{B(C_6F_5)_3}_2]^-$, obtained by recrystallisation of **3a**. The anions and hydrogen atoms have been omitted for clarity purposes. Metric parameters are not given due to the poor quality of the crystal structure.

Figure S11. Molecular structures of the cation in $[({\mu^2-RO^F}Ca^{\bullet}(Et_2O))_2]^{2+}.2[H_2N{B(C_6F_5)_3}_2]^{-}$, obtained by recrystallisation of **3a**. The anions and hydrogen atoms have been omitted for clarity purposes. Metric parameters are not given due to the poor quality of the crystal structure.