SUPPORTING INFORMATION:

Highly Selective Adsorption of *p*-Xylene over other C₈ Aromatic Hydrocarbons by Co-CUK-1: A Combined Experimental and Theoretical Assessment

Ji Woong Yoon,^{+[a]} Ji Sun Lee,^{+[a,b]} Graham W. Piburn, ^[c] Kyoung Ho Cho,^[a] Keonghee Jeon,^[d] Hyung-Kyu Lim,^[d] Hyungjun Kim,^[d] Chul-Ho Jun,^[b] Simon M. Humphrey, ^{*[c]} Rajamani Krishna^{*[e]} and Jong-San Chang^{*[a,f]}

- [a] Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), P.O.Box 107, Yusung, Daejeon 305-600, Korea. Email: <u>jschang@krict.re.kr</u>
- [b] Department of Chemistry, Center for Bioactive Molecular Hybrid, Yonsei University, Seodamoonku, Seoul 120-749, Korea
- [c] Department of Chemistry, the University of Texas at Austin, 2.204 Welch Hall, 105 E. 24th St. Stop A5300, Austin TX 78712, U.S.A. Email: <u>smh@cm.utexas.edu</u>
- [d] Graduate School of Energy, Environment, Water, and Sustainability; Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Yuseong-gu, Daejeon 305-701, Korea
- [e] Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherland. Email: <u>r.krishna@contact.uva.nl</u>
- [f] Department of Chemistry, Sungkyunkwan University, Suwon 440-476, Korea

⁺These two authors equally contributed to this work.

Contents

Fitting of pure component isotherms in Co-CUK-1	3
IAST calculations of mixture adsorption equilibrium in Co-CUK-1	3
Transient breakthrough simulations	4
Notation	4
Figure S1	6
Figure S2	7
Figure S3	8
Figure S4	9
Figure S5	.10
Table S1	.11
Figure S6	.12
Table S2	.13
Figure S7	.14
Figure S8	.15
References	15

Fitting of pure component isotherms in Co-CUK-1

The measured pure component isotherm data for each aromatic molecule was fitted with the singlesite Langmuir-Freundlich model:

$$q = q_{sat} \frac{bp^{\nu}}{1 + bp^{\nu}} \tag{1}$$

The saturation capacities q_{sat} , Langmuir- constants *b*, and the Freundlich exponent v, are provided in Table S5. It provides a comparison of the experimental isotherm data with the Langmuir-Freundlich fits. The fits are excellent for all four guest molecules.

Let us define, $q_{i,sat}$, as the saturation capacity of species *i*. The saturation capacities are determined to be:

p-xylene(1), $q_{1,sat} = 2.53 \text{ mol kg}^{-1}$ *m*-xylene(2), $q_{2,sat} = 1.33 \text{ mol kg}^{-1}$ *o*-xylene(3), $q_{3,sat} = 1.25 \text{ mol kg}^{-1}$ ethylbenzene(4), $q_{4,sat} = 1.73 \text{ mol kg}^{-1}$

IAST calculations of mixture adsorption equilibrium in Co-CUK-1

We use the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz¹ to determine the adsorption equilibrium for equimolar gas phase 4-component equimolar *p*-xylene(1)/*m*-xylene(2)/*o*-xylene(3)/ethylbenzene(4) mixtures; see Figure 4(a) With increasing total gas pressure, the *p*-xylene loading increases at the expense of its partner molecules. We note that at a total pressure of 100 kPa, the adsorbed phase is rich in *p*-xylene.

Let us define the fractional occupancy within the pores, θ_{t}

$$\theta_t = \sum_{i=1}^n \frac{q_i}{q_{i,sat}} \tag{2}$$

where q_i is the molar loading of species *i* in the mixture, and $q_{i,sat}$ is the saturation capacity of species *i*.

Figure S6 shows the calculations of the fractional occupancy, θ_t , within the pores of Co-CUK-1 as a function of the total gas phase pressure, p_t . We note that the pores are saturated, i.e. $\theta_t \rightarrow 1$, when the total pressure p_t reaches 100 kPa.

For separation of 4-component equimolar p-xylene(1)/m-xylene(2)/o-xylene(3) /ethylbenzene(4) mixtures we adopt the following definition of selectivity that was used in the recent paper of Torres-Knoop et al.²

$$S_{ads} = \frac{(q_3)/(q_1 + q_2 + q_4)}{(p_3)/(p_1 + p_2 + p_4)} = 3\frac{(q_3)}{(q_1 + q_2 + q_4)}$$
(3)

Figure S7 shows that the S_{ads} value as a function of the fractional pore occupancy, θ_t . We note that the selectivity value approaches a value of about 50 as $\theta_t \rightarrow 1$. The selectivity is strongly in favor of *p*-xylene because of molecular packing effects; this principle has been elucidated in detail in earlier work.³ The strong, near-exponential increase in the selectivity in favor of *p*-xylene selectivity is a typical characteristic of separations due to molecular packing or entropy effects.

Transient breakthrough simulations

The separation performance of a fixed-bed adsorber is dictated by both adsorption selectivity and capacity. A higher capacity to adsorb p-xylene is a desirable characteristic of SMB adsorbers. Using the pure component isotherm fits of experimental data, we carried out transient breakthrough simulations for Co-CUK-1(MW) using the methodology described in in earlier works.^{4,5}

The breakthrough characteristics for any component are essentially dictated primarily by the characteristic contact time $\frac{L}{v} = \frac{L\varepsilon}{u}$ between the crystallites and the surrounding fluid phase. It is common to use the dimensionless time, $\tau = \frac{tu}{L\varepsilon}$, obtained by dividing the actual time, *t*, by the characteristic time, $\frac{L\varepsilon}{u}$ when plotting simulated breakthrough curves. For the breakthrough simulations reported here we use the parameter values: L = 0.3 m; voidage of bed, $\varepsilon = 0.4$; interstitial gas velocity, v = 0.1 m/s; superficial gas velocity, u = 0.04 m/s.

Notation

b	Langmuir-Freundlich constant, $Pa^{-\nu}$
Ci	molar concentration of species <i>i</i> in gas mixture, mol m^{-3}
c_{i0}	molar concentration of species i in gas mixture at inlet to adsorber, mol m ⁻³
L	length of packed bed adsorber, m
n	number of components in the mixture, dimensionless
p_{i}	partial pressure of species <i>i</i> in mixture, Pa
p_{t}	total system pressure, Pa
$q_{ m i}$	component molar loading of species <i>i</i> , mol kg ⁻¹
q_{t}	total molar loading for mixture adsorption, mol kg ⁻¹
$q_{\mathrm{i,sat}}$	molar loading of species <i>i</i> at saturation, mol kg ⁻¹
Q_{i}	volumetric loading of species <i>i</i> at saturation, mol L^{-1}
$\Delta Q_{\rm i}$	volumetric separation capacity of species <i>i</i> from a mixture, mol L ⁻¹
$S_{ m ads}$	adsorption selectivity, dimensionless

t	time, s
Т	absolute temperature, K
u	superficial gas velocity in packed bed, m s ^{-1}
v	interstitial gas velocity in packed bed, m s ⁻¹
<i>y</i> _i	mole fraction of species <i>i</i> in a mixture of species, dimensionless

Greek letters

3	voidage of packed bed, dimensionless
$ heta_{ ext{t}}$	fractional occupancy for mixture adsorption, dimensionless
V	exponent in dual-Langmuir-Freundlich isotherm, dimensionless
τ	time, dimensionless

Subscripts

i	referring to component i
t	referring to total mixture

Figure S1. GCMC loading trajectory for each adsorbate molecule in Co-CUK-1 unit-cell.

Figure S2. Stepwise pictures according to synthesis steps of Co-CUK-1.

Figure S3. SEM images of (a) Co-CUK-1(HT) and Co-CUK-1(MW).

Figure S4. N₂ adsorption isotherms of Co-CUK-1(HT) at 77 K depending on purification with solvents.

Figure S5. Thermogravimetric profiles of two Co-CUK-1 samples. An inset figure displays a larger weight loss (0.5 wt%) in Co-CUK-1(MW) than that in Co-CUK-1(HT) below 673 K.

	$q_{\sf sat}$	b	Vi
	mol kg⁻¹	Pa⁻╯	dimensionless
<i>p</i> -xylene	2.53	5.74 x 10 ⁻²	0.54
<i>m</i> -xylene	1.33	2.32 x 10 ⁻²	0.72
o-xylene	1.25	1.79 x 10 ⁻²	0.72
ethylbenzene	1.73	5.71 x 10 ⁻³	1

Table S1. Langmuir-Freundlich parameters for C_8 aromatic hydrocarbons at 323 K in Co-CUK-1(MW).

Figure S6. Calculations of the fractional occupancy, θ_t , within the pores of Co-CUK-1(MW) at 323 K as a function of the total gas phase pressure, p_t .

Figure S7. IAST calculations for *p*-xylene adsorption selectivity for 4-component *p*-xylene/*m*-xylene/*o*-xylene/ethylbenzene mixture in Co-CUK-1(MW) at 323 K. The *x*-axis is fractional occupancy, θ_{t} , within the pores of the MOFs.

		-
	Average Interaction Energy	
Adsorbate	(kcai/moi/molecule)	
	Total / Electrostatic / VdW	
<i>p</i> -Xvlene	-22.13 / -20.71 / -1.42	
<i>p</i> • • j • • • •		
<i>m</i> -Xylene	-20.63 / -19.37 / -1.26	
o-Xylene	-20.60 / -19.70 / -0.91	
ethylbenzene	-20.58 / -19.51 / -1.07	

 Table S2. Average interaction energy between adsorbate and framework.

Figure S8. (a) Electrostatic potential map due to the electron density of the Co-CUK-1 framework, which shows highly polarized region due to μ -OH functional groups and (b) Chemical topology of *p*-xylene and its packing structure are suitable for developing adsorbate-framework interaction with highly polarized region.

References

- 1. A. L. Myers, J. M. Prausnitz, A.I.Ch.E.J., 1965, 11, 121-130.
- 2. A.Torres-Knoop, R. Krishna, D. Dubbeldam, Angew. Chem. Int. Ed., 2014, 53, 7774-7778.
- 3. R. Krishna, Phys. Chem. Chem. Phys., 2015, 17, 39-59.
- 4. R. Krishna, RSC Adv., 2015, 5, 52269-52295.
- 5. R. Krishna, Microporous Mesoporous Mater., 2014, 185, 30-50.