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Fitting of pure component isotherms in Co-CUK-1

The measured pure component isotherm data for each aromatic molecule was fitted with the single-

site Langmuir-Freundlich model:
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1+bp”
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The saturation capacities qs,t, Langmuir- constants b, and the Freundlich exponent v, are provided in
Table S5. It provides a comparison of the experimental isotherm data with the Langmuir-Freundlich fits.
The fits are excellent for all four guest molecules.

Let us define, qisat, @s the saturation capacity of species i. The saturation capacities are determined
to be:

p-xylene(1), g1 sat = 2.53 mol kg™’

m-xylene(2), q2.sat = 1.33 mol kg™’

o-xylene(3), @3 sat = 1.25 mol kg™

ethylbenzene(4), g4 sat = 1.73 mol kg™’

IAST calculations of mixture adsorption equilibrium in Co-CUK-1

We use the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz' to determine the
adsorption equilibrium for equimolar gas phase 4-component equimolar p-xylene(1)/m-xylene(2)/o-
xylene(3)/ethylbenzene(4) mixtures; see Figure 4(a) With increasing total gas pressure, the p-xylene
loading increases at the expense of its partner molecules. We note that at a total pressure of 100 kPa,
the adsorbed phase is rich in p-xylene.

Let us define the fractional occupancy within the pores, 6,

6=y @
i=1 9 sar
where g; is the molar loading of species i in the mixture, and g s,tis the saturation capacity of species .
Figure S6 shows the calculations of the fractional occupancy, 0,, within the pores of Co-CUK-1 as a
function of the total gas phase pressure, p.. We note that the pores are saturated, i.e. 6, — 1, when the
total pressure p; reaches 100 kPa.
For separation of 4-component equimolar p-xylene(1)/m-xylene(2)/o-xylene(3) /ethylbenzene(4)
mixtures we adopt the following definition of selectivity that was used in the recent paper of Torres-

Knoop et al.?
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Figure S7 shows that the S,q value as a function of the fractional pore occupancy, 8. We note
that the selectivity value approaches a value of about 50 as ¢, — 1. The selectivity is strongly in favor
of p-xylene because of molecular packing effects; this principle has been elucidated in detail in earlier
work.2 The strong, near-exponential increase in the selectivity in favor of p-xylene selectivity is a typical

characteristic of separations due to molecular packing or entropy effects.

Transient breakthrough simulations

The separation performance of a fixed-bed adsorber is dictated by both adsorption selectivity and
capacity. A higher capacity to adsorb p-xylene is a desirable characteristic of SMB adsorbers. Using
the pure component isotherm fits of experimental data, we carried out transient breakthrough
simulations for Co-CUK-1(MW) using the methodology described in in earlier works.*5

The breakthrough characteristics for any component are essentially dictated primarily by the

L L
characteristic contact time L_L£e between the crystallites and the surrounding fluid phase. It is
v u

common to use the dimensionless time, r:L—u, obtained by dividing the actual time, {, by the
&

L
characteristic time, e when plotting simulated breakthrough curves. For the breakthrough
u

simulations reported here we use the parameter values: L = 0.3 m; voidage of bed, € = 0.4; interstitial

gas velocity, v = 0.1 m/s; superficial gas velocity, u = 0.04 m/s.

Notation

b Langmuir-Freundlich constant, Pa™

G molar concentration of species i in gas mixture, mol m-3

Cio molar concentration of species i in gas mixture at inlet to adsorber, mol m-3
L length of packed bed adsorber, m

n number of components in the mixture, dimensionless

i partial pressure of species i/ in mixture, Pa

D total system pressure, Pa

qi component molar loading of species i, mol kg-*

q: total molar loading for mixture adsorption, mol kg-*

i sat molar loading of species i at saturation, mol kg

0; volumetric loading of species i at saturation, mol L™

A0, volumetric separation capacity of species i from a mixture, mol L™
Sads adsorption selectivity, dimensionless



i

0,

time, s

absolute temperature, K

superficial gas velocity in packed bed, m s-*
interstitial gas velocity in packed bed, m s

mole fraction of species i in a mixture of species, dimensionless

Greek letters

voidage of packed bed, dimensionless
fractional occupancy for mixture adsorption, dimensionless
exponent in dual-Langmuir-Freundlich isotherm, dimensionless

time, dimensionless

Subscripts

referring to component /

referring to total mixture
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Figure S1. GCMC loading trajectory for each adsorbate molecule in Co-CUK-1 unit-cell.



Solution A

KOH + H,0 + 2,4-Pyridine
dicarboxylic acid (2,4-pdcH,)

Solution B
COC12'6H20 + H20

Mixing of solution A and B for 20 min at 25°C Co:2,4-pdcH,:OH=3:2:6

(molar ratio)

Crystallization under
hydrothermal (>10 h) or
—> microwave (1-30 min)
condition at 473 K

!

Filtration, Washing,
and Drying

Figure S2. Stepwise pictures according to synthesis steps of Co-CUK-1.
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Figure S$3. SEM images of (a) Co-CUK-1(HT) and Co-CUK-1(MW).
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Figure S4. N, adsorption isotherms of Co-CUK-1(HT) at 77 K depending on purification with solvents.
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Figure S5. Thermogravimetric profiles of two Co-CUK-1 samples. An inset figure displays a larger
weight loss (0.5 wt%) in Co-CUK-1(MW) than that in Co-CUK-1(HT) below 673 K.
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Qsat b Vi

mol kg’ Pav dimensionless
p-xylene 2.53 574 x 102 0.54
ethylbenzene 1.73 5.71 x 10-3 1

Table S1. Langmuir-Freundlich parameters for Cg aromatic hydrocarbons at 323 K in Co-CUK-1(MW).
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Figure S6. Calculations of the fractional occupancy, 9, within the pores of Co-CUK-1(MW) at 323 K as

a function of the total gas phase pressure, p;.
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Figure S7. IAST calculations for p-xylene adsorption selectivity for 4-component p-xylene/m-xylene/o-
xylene/ethylbenzene mixture in Co-CUK-1(MW) at 323 K. The x-axis is fractional occupancy, &, within
the pores of the MOFs.
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Average Interaction Energy
Adsorbate (kcal/mol/molecule)
Total / Electrostatic / VAW

p-Xylene -22.13/-20.71/-1.42
m-Xylene -20.63/-19.37 /-1.26
o-Xylene -20.60/-19.70 / -0.91
ethylbenzene -20.58 /-19.51 /-1.07

Table S2. Average interaction energy between adsorbate and framework.

14



Side + p-Xylene

(:} p—OH sites

+0.040

Electrostatic
Potential (Ha)

—0.003

Figure S8. (a) Electrostatic potential map due to the electron density of the Co-CUK-1 framework,
which shows highly polarized region due to y-OH functional groups and (b) Chemical topology of p-

xylene and its packing structure are suitable for developing adsorbate-framework interaction with highly
polarized region.
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