Revised ESI for Manuscript: DT-ART-09-2017-003341.R1

Electronic Supplementary Information (ESI)

A Microporous MOF with Polar Pore Surface Exhibiting Excellent Selective Adsorption of CO₂ from CO₂-N₂ and CO₂-CH₄ Gas Mixture with High CO₂ Loading

Arun Pal, Santanu Chand, Syed Meheboob Elahi and Madhab C. Das*

Department of Chemistry, Indian Institute of Technology Kharagpur 721302, India, E-mail: <u>mcdas@chem.iitkgp.ernet.in</u>

Empirical formula	$C_{21}H_{15}N_2O_6SZn$
Formula weight	488.78
Temperature(K)	298(1)
Radiation	Μο-Κα
Wavelength(λ)	0.71073Å
Crystal system	Triclinic
Space group	Pī
a[Å]	9.1721(8)
b[Å]	11.5764(11)
c[Å]	12.8822(12)
α[°]	79.504(6)
β[°]	72.656(6)
γ[°]	69.425(6)
Volume[Å ³]	1217.8(2)
Z	2
Density (calculated)	1.333
[Mg/m ³]	
Absorption coefficient	1.129
[mm ⁻¹]	
F(000)	498
Refl. used $[I > 2\sigma(I)]$	3103
Independent reflections	5992
R int	0.1032
Refinement method	full-matrix least squares on F^2
GOF	0.969
Final <i>R</i> indices[I> $2\sigma(I)$]	$R_1 = 0.0658$
	$wR_2 = 0.1427$
<i>R</i> indices (all data)	$R_1 = 0.1515$
	$wR_2 = 0.1710$

 Table S1: Crystal data and structure refinements for IITKGP-5.

Figure S1: Representation of $-SO_2$ decorated pores of **IITKGP-5** along the crystallographic *b* axis.

Figure S2: Simulated (red) and as synthesized (black) PXRD pattern of IITKGP-5.

Figure S3: As synthesized (blue), chloroform exchanged (red) and desolvated (black) PXRD pattern.

Figure S4: TGA of IITKGP-5.

Calculation of Isosteric Heats of Adsorption:

The isosteric heats of adsorption (Q_{st}) were calculated using the Clausius-Clapeyron equation based on pure-component isotherms collected at two different temperatures of 273 K and 295 K. The Q_{st} was defined as

$$Q_{st} = -R\left(\frac{\partial lnx}{\partial \left(\frac{1}{T}\right)}\right)_{y}$$

Where x is the pressure, T is the temperature, R is the gas constant and y is the adsorption amount. These calculations are done through the "Heat of Adsorption" function embedded in the software supplied by Micromeritics 3- Flex Surface Characterization Analyzer.

Figure S5: Isosteric heat of CO₂, CH₄ and N₂ adsorption (Q_{st}).

Calculation of CO₂/N₂ and CO₂/CH₄ Selectivity:

IAST Selectivity:

Adsorption isotherms and gas selectivities of mixed CO_2/N_2 (15:85) and CO_2/CH_4 (50:50) at different temperatures were calculated based on the ideal adsorbed solution theory (IAST) proposed by Myers and Prausnitz.¹ In order to calculate the selective sorption performance of **IITKGP-5** toward the separation of binary mixed gases, the parameters fitted from the singlecomponent CO_2 , CH_4 and N_2 adsorption isotherms based on the single-site Langmuir–Freundlich model and were used in the IAST calculations as given below in detail.²

$$y = \frac{q_m b x^{1/n}}{1 + b x^{1/n}}$$

Where y is the adsorbed amount (mmol/g), q_m is the saturation capacity (mmol/g), x is the equilibrium pressure (kPa) and b and n is the Langmuir and Freundlich constants.

The predicted adsorption selectivity is defined as

$$S = \begin{pmatrix} \frac{x_1}{y_1} \\ \frac{x_2}{y_2} \end{pmatrix}$$

Where x_i and y_i are the mole fractions of component i (i = 1, 2) in the adsorbed and bulk phases, respectively. The IAST calculations were carried out for a binary mixture containing 15% CO₂ (y₁) and 85% N₂ (y₂), which is typical of flue gases and for a binary mixture containing 50% CO₂ (y₁) and 50% CH₄ (y₂), which is typical of landfill gases.

Figure S6: Langmuir-Freundlich fitting (red line) for CO₂ (black circle) isotherms measured at 273 K.

Figure S7: Langmuir-Freundlich fitting (red line) for CH₄ (black circle) isotherms measured at 273 K.

Figure S8: Langmuir-Freundlich fitting (red line) for N₂ (black circle) isotherms measured at 273 K.

Figure S9: Langmuir-Freundlich fittings (red line) for CO₂ (black circle) isotherms measured at 295 K.

Figure S10: Langmuir-Freundlich fitting (red line) for CH₄ (black circle) isotherms measured at 295 K.

Figure S11: Langmuir-Freundlich fitting (red line) for N₂ (black circle) isotherms measured at 295 K.

Zn1	01	2.024(4)	Zn1	O2	2.031(3)	Zn1	N1	2.033(4)
Zn1	04	2.055(3)	Zn1	O3	2.044(3)			

157.27(15) Zn1 01 Zn1 O2 N1 04 104.48(14) O1 Zn1 N1 102.39(16) O1 Zn1 O3 87.11(15) 89.74(15) 100.35(16) Zn1 O2 Zn1 O2 N1 O3 Zn1 87.13(16) N1 Zn1 98.03(14) 01 04 03 O2 Zn1 O4 157.47(15) O3 Zn1 87.23(16) O4

Table S3: Non-bonding interactions in IITKGP-5.

D HA	d(HA) (Å)	D(DA) (Å)	< DHA (⁰)
C13 H13O6	2.256(2)	3.169(3)	167.13(13)
Сб НбО4	2.435(2)	3.280(3)	150.98(11)

Table S4: Adsorption selectivity of reported MOFs for CO_2/N_2 (15:85) and CO_2/CH_4 (50:50) at 1 bar. (a: IAST selectivity; b: selectivity from Henry's Law; c: From slopes of adsorption isotherms at low pressure; d: selectivity at 2 bar).

Compound	CO ₂ /N ₂ adsorption	CO ₂ /CH ₄ adsorption	Temperature	Ref.
	selectivity	selectivity	(K)	
IITKGP-5	435.5ª	151.6ª	273	This work
	147.8ª	23.8ª, 37.3 ^d	295	This work
2	126ª	26ª	298	15(a)
	277ª	35ª	273	
PCN-88	18ª	5 ^a	296	15(b)
PCN-61	15ª		298	15(c)
ZJNU-44a	15ª	5.5ª	296	15(d)
UTSA-15a		14.2 ^{a,d}	296	6
UTSA-16	314.7ª	29.8 ^{a,d}	296	6
UTSA-20a		8.3 ^{a,d}	296	6
UTSA-25a		9.4 ^{a,d}	296	6

UTSA-33a		7.0 ^{a,d}	296	6
UTSA-34a		5.1 ^{a,d}	296	6
UTSA-49a	95.8ª	33.7ª	298	15(e)
	197.7ª	34.8ª	273	
UTSA-72a	48.3ª	40.7ª	273	15(f)
	35.6ª	9.3ª	296	
UTSA-85a	55ª	11.4ª	273	15(g)
	62.5ª	6.4ª	296	
SIFSIX-2-Cu	13.7ª	5.3ª	298	15(h)
SIFSIX-2-Cu-i	140ª	33ª	298	15(h)
SIFSIX-1-Cu	27ª	11 ^a	298	15(h)
TIFSIX-1-Cu	30 ^a	11ª	298	15(i)
SNFSIX-1-Cu	22ª	12ª	298	15(i)
HKUST-1	101 ^b	7.4 ^{a,d}	293	15(j)
HKUST-1(hydrated)	28ª	7.5ª	298	15(k)
Zn-MOF-74	87.7ª	5ª	296	6
SNU-M10	98ª		298	15(l)
Cu ₂₄ (TPBTM) ₈	22ª		298	15(c)
1		16ª	298	15(m)
PMOF-3a	29.2ª	8 ^a	273	15(n)
	23.4ª	5.1ª	296	
JUC-141	21.62ª	4.20ª	273	15(0)
	27.60 ^a	8.72ª	298	
Mg-MOF-74	182.1ª	105.1 ^{a,d}	296	6
ZIF-68	18.7°	5°	298	15(p)
ZIF-69	19.9°	5.1°	298	15(p)
ZIF-70	17.3°	5.2°	298	15(p)
ZIF-78	41.4ª	10.4 ^{a,d}	296	15(p)
ZIF-78	50.1°	10.6°	298	15(p)
ZIF-79	23.2°	5.4°	298	15(p)
ZIF-81	23.8°	5.7°	298	15(p)
ZIF-82	35.3°	9.6°	298	15(p)
ZIF-95	18±1.7°	4.3±0.4°	298	15(p)

ZIF-100	25±2.4°	5.9±0.4°	298	15(p)
Bio-MOF-11	79.5ª		296	6
Cu-TDPAT	57.8ª	13.8 ^{a,d}	296	6
MOF-177	3.6ª		296	6
Cu-BTTri	21ª		298	15(q)
en-Cu-BTTri	25ª		298	15(q)
mmen-Cu-BTTri	327ª		298	15(r)
mmen-Mg ₂ (dobpdc)	329ª		298	15(s)
MIL-101		9.6 ^{a,d}	296	6
1	250ª	6.4ª	273	15(t)
		5.6ª	298	
1		4.1ª	273	15(u)
		2.3ª	296	
1		8.9ª	273	15(v)
		8.1ª	298	
MAF-66	403 ^b	7.5 ^b	273	15(e)
	225 ^b	5.8 ^b	298	
NOTT-202a	26.7 ^b	2.9 ^b	273K	15(w)
	4.3 ^b	1.4 ^b	293K	
Cu-SSZ13(zeolite)	67.4ª		296	6
H-SSZ13(zeolite)	71.3ª		296	6
NaX zeolite	145.9ª	60 ^{a,d}	296	6
JBW(zeolite)	524.4ª	685.5 ^{a,d}	296	6
Zeolite MFI	11.2ª	2.5 ^{a,d}	296	6

References:

- 1. A. L. Myers and J. M. Prausnitz, AIChE J. 1965, 11, 121.
- 2. B. Li, Y. Zhang, R. Krishna, K. Yao, Y. Han, Z. Wu, D. Ma, Z. Shi, T. Pham, B. Space, J. Liu,
- P. K.Thallapally, J. Liu, M. Chrzanowski and S. Ma, J. Am. Chem. Soc. 2014, 136, 8654.