Supplementary Information

Two metal-organic frameworks based on flexible benzimidazole carboxylic acid ligand: selective gas sorption

and luminescence

Fang Zhang, Lei Hou,^{*} Wenyan Zhang,^{*} Yangtian Yan, Yunlong Wu, Ruifeng Yang, Feng Cao, and Yao-Yu Wang.

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 7100069, P. R. China

Email:lhou2009@nwu.edu.cn; zhangwy@nwu.edu.cn

Fig. S1 PXRD patterns of 1 (a) and 2 (b) simulated from the X-ray single-crystal structures, experimental samples and desolvated samples.

Fig. S2 TGA plots of complexes 1 and 2.

IAST adsorption selectivity calculation

The experimental isotherm data for pure CO_2 and CH_4 (measured at 273 and 298 K) were fitted using a Langmuir-Freundlich (L-F) model

$$q = \frac{a * b * p^c}{1 + b * p^c}$$

Where q and p are adsorbed amounts and pressures of component *i*, respectively. The adsorption selectivities for binary mixtures of CO₂/CH₄ at 273 and 298 K defined by

$$S_{ads} = (q_1 / q_2) / (p_1 / p_2)$$

Where *qi* is the amount of *i* adsorbed and *pi* is the partial pressure of *i* in the mixture.

Fig. S3 CO₂ adsorption isotherms of **1a** at 298K with fitting by L-F model: a = 1.74802, b = 0.00689, c = 1.27132, Chi[^]2 = 2.0513×10⁻⁴, R[^]2 = 0.99882; CH₄ adsorption isotherms of **1a** at 298K with fitting by L-F model: a = 0.46111, b = 0.00292, c = 0.96391, Chi[^]2 = 3.05 ×10⁻⁷, R[^]2 = 0.99966; CO₂ adsorption isotherms of **1a** at 273K with fitting by L-F model: a = 1.85073, b = 0.04204, c = 0.96216, Chi[^]2 = 5.79×10⁻⁴, R[^]2 = 0.99756; CH₄ adsorption isotherms of **1a** at 273K with fitting by L-F model: a = 2.07327, b = 0.00172, c = 1.03366, Chi[^]2 = 7.07×10⁻⁷, R[^]2 = 0.99995.

Fig. S4 IAST adsorption selectivity of 1a for the CO_2/CH_4 mixtures with components of 50:50 at 273 K.

Calculation of Sorption Heat for CO₂ Uptake Using Virial 2 Model

$$\ln P = \ln N + 1 / T \sum_{i=0}^{m} aiN^{i} + \sum_{i=0}^{n} biN^{i} Q_{st} = -R \sum_{i=0}^{m} aiN^{i}$$

The above virial expression was used to fit the combined isotherm data for **1a** at 273, 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, a_i and b_i are virial coefficients, and *m* and *N* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S5 (a) Virial analysis of the CO₂ adsorption data at 273 and 298 K for **1a**. Fitting results: a0= -2906.84, a1 = 26.51, a2 = 0.30, a3 = 0, a4 = 0, Chi^2 = 0.00596, R^2 = 0.99788. (b) Isosteric heat of CO₂ adsorption for **1a** estimated by the virial equation from the adsorption isotherms at 273 and 298 K.

Fig. S6 CO₂ adsorption isotherms of **2a** at 298K with fitting by L-F model: a =75.55824, b = 0.00213, c =0.56069, Chi^2=2.59×10⁻³, R^2 = 0.99399;CH₄ adsorption isotherms of **2a** at 298K with fitting by L-F model: a = 1.31743, b = 0.00339, c = 1.00758, Chi^2= 1.28×10⁻⁷, R^2 = 0.99999; CO2 adsorption isotherms of **2a** at 273K with fitting by L-F model: a =3.10526, b = 0.10093, c =0.79582, Chi^2 = 3.76×10^{-4} , R² = 0.99958; CH₄ adsorption isotherms of **2a** at 273K with fitting by L-F model: a =1.66684, b = 0.00637, c = 0.99014, Chi^2= 1.86×10⁻⁷, R^2 = 1.

Fig. S7 IAST adsorption selectivity of 2a for the CO₂/CH₄ mixtures with different components at 273K.

Fig. S8 (a) Virial analysis of the CO₂ adsorption data at 273K and 298 K for **2a**. Fitting results: a0=-4004.85, a1 = 18.31, a2 = 0.0389, a3 = 0, a4 = 0, Chi[^]2 = 0.01242, R[^]2 = 0.99748. (b) Isosteric heat of CO₂ adsorption for **2a** estimated by the virial equation from the adsorption isotherms at 273 and 298 K.

Fig. S9 Solid-state excitation spectra of $\rm H_4L$ ligand, 1 and 2.

Table S1	Selected	bond	lengths	(Å) and	l bond	angles	(°)	for 1	and 2

Complex 1								
Cd(1)-O(1)	2.534(6)	O(4)#1-Cd(1)-N(2)#3	101.0(2)					
Cd(1)-O(1W)	2.346(6)	O(8)#2-Cd(1)-O(1)	94.6(2)					
Cd(1)-O(2)	2.330(6)	O(8)#2-Cd(1)-O(1W)	85.0(2)					
Cd(1)-O(4)#1	2.282(6)	O(8)#2-Cd(1)-O(2)	146.2(2)					
Cd(1)-O(8)#2	2.304(6)	N(2)#3-Cd(1)-O(1)	96.2(2)					
Cd(1)-N(2)#3	2.288(6)	N(2)#3-Cd(1)-O(1W)	173.2(2)					
Cd(2)-O(2W)	2.333(6)	N(2)#3-Cd(1)-O(2)	100.3(2)					
Cd(2)-O(6)#4	2.189(5)	N(2)#3-Cd(1)-O(8)#2	91.2(2)					
Cd(2)-O(7)#5	2.157(5)	O(6)#4-Cd(2)-O(2W)	91.0(2)					
Cd(2)-O(9)	2.315(8)	O(6)#4-Cd(2)-O(9)	83.6(3)					
Cd(2)-N(4)	2.246(6)	O(6)#4-Cd(2)-N(4)	113.1(2)					
O(1W)-Cd(1)-O(1)	78.5(2)	O(7)#5-Cd(2)-O(2W)	92.9(2)					
O(2)-Cd(1)-O(1)	52.8(2)	O(7)#5-Cd(2)-O(6)#4	124.8(2)					
O(2)-Cd(1)-O(1W)	80.1(2)	O(7)#5-Cd(2)-O(9)	88.7(3)					
O(4)#1-Cd(1)-O(1)	162.5(2)	O(7)#5-Cd(2)-N(4)	120.5(2)					
O(4)#1-Cd(1)-O(1W)	84.1(2)	O(9)-Cd(2)-O(2W)	174.2(3)					
O(4)#1-Cd(1)-O(2)	125.6(2)	N(4)-Cd(2)-O(2W)	98.5(2)					
O(4)#1-Cd(1)-O(8)#2	82.3(2)	N(4)-Cd(2)-O(9)	85.4(3)					
Symmetry codes: #1 -x+1, -y+3, -z+1; #2 -x, -y+2, -z+1; #3 -x, -y+3, -z+1; #4 -x, -y, -z+2;								
#5 x+1, y, z; #6 x-1, y, z.								
Complex 2								
Zn(1)-O(2)#1	1.925(5)	O(2)#1-Zn(1)-O(1W)	94.6(3)					
Zn(1)-N(1)	1.976(6)	N(1)-Zn(1)-O(1W)	100.9(3)					
Zn(1)-O(3)#2	1.900(5)	O(3)#2-Zn(1)-O(2)#1	119.3(2)					
Zn(1)-O(1W)	2.006(6)	O(3)#2-Zn(1)-N(1)	118.2(2)					
O(2)#1-Zn(1)-N(1)	115.3(2)	O(3)#2-Zn(1)-O(1W)	101.4(3)					
Symmetry codes: #1 -x+1, -y+2, -z; #2 x, -y+3/2, z-1/2; #3 -x+2, -y+1, -z; #4 x, -y+3/2,								

z+1/2.