Supplementary Information

Two metal-organic frameworks based on flexible

benzimidazole carboxylic acid ligand: selective gas sorption

 and luminescenceFang Zhang, Lei Hou, ${ }^{*}$ Wenyan Zhang,* Yangtian Yan, Yunlong Wu, Ruifeng Yang, Feng Cao, and Yao-Yu Wang.

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry \& Materials Science, Northwest University, Xi'an 7100069, P. R. China

Email:lhou2009@nwu.edu.cn; zhangwy@nwu.edu.cn

Fig. S1 PXRD patterns of 1 (a) and 2 (b) simulated from the X-ray single-crystal structures, experimental samples and desolvated samples.

Fig. S2 TGA plots of complexes 1 and 2.

IAST adsorption selectivity calculation

The experimental isotherm data for pure CO_{2} and CH_{4} (measured at 273 and 298 K) were fitted using a Langmuir-Freundlich (L-F) model

$$
q=\frac{a * b * p^{c}}{1+b * p^{c}}
$$

Where q and p are adsorbed amounts and pressures of component i, respectively. The adsorption selectivities for binary mixtures of $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ at 273 and 298 K defined by

$$
S_{a d s}=\left(q_{1} / q_{2}\right) /\left(p_{1} / p_{2}\right)
$$

Where $q i$ is the amount of i adsorbed and $p i$ is the partial pressure of i in the mixture.

Fig. S3 CO_{2} adsorption isotherms of $\mathbf{1 a}$ at 298 K with fitting by L-F model: $\mathrm{a}=1.74802, \mathrm{~b}=$ $0.00689, \mathrm{c}=1.27132, \mathrm{Chi}^{\wedge} 2=2.0513 \times 10^{-4}, \mathrm{R}^{\wedge} 2=0.99882 ; \mathrm{CH}_{4}$ adsorption isotherms of 1 a at 298 K with fitting by L-F model: $\mathrm{a}=0.46111, \mathrm{~b}=0.00292, \mathrm{c}=0.96391$, $\mathrm{Chi}^{\wedge} 2=3.05 \times 10^{-7}$, $\mathrm{R}^{\wedge} 2=0.99966 ; \mathrm{CO}_{2}$ adsorption isotherms of $\mathbf{1 a}$ at 273 K with fitting by L-F model: a $=1.85073, \mathrm{~b}=0.04204, \mathrm{c}=0.96216, \mathrm{Chi}^{\wedge} 2=5.79 \times 10^{-4}, \mathrm{R}^{\wedge} 2=0.99756 ; \mathrm{CH}_{4}$ adsorption isotherms of 1 a at 273 K with fitting by L-F model: $\mathrm{a}=2.07327, \mathrm{~b}=0.00172, \mathrm{c}=1.03366$, Chi^2 $=7.07 \times 10^{-7,} \mathrm{R}^{\wedge} 2=0.99995$.

Fig. S4 IAST adsorption selectivity of $\mathbf{1 a}$ for the $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ mixtures with components of 50:50 at 273 K .

Calculation of Sorption Heat for $\mathbf{C O}_{2}$ Uptake Using Virial 2 Model

$$
\ln P=\ln N+1 / T \sum_{i=0}^{m} a i N^{i}+\sum_{i=0}^{n} b i N^{i} Q_{s t}=-R \sum_{i=0}^{m} a i N^{i}
$$

The above virial expression was used to fit the combined isotherm data for $\mathbf{1 a}$ at 273,298 K , where P is the pressure, N is the adsorbed amount, T is the temperature, a_{i} and b_{i} are virial coefficients, and m and N are the number of coefficients used to describe the isotherms. $Q_{s t}$ is the coverage-dependent enthalpy of adsorption and R is the universal gas constant.

Fig. $\mathbf{S 5}$ (a) Virial analysis of the CO_{2} adsorption data at 273 and 298 K for 1a. Fitting results: $\mathrm{a} 0=-2906.84, \mathrm{a} 1=26.51, \mathrm{a} 2=0.30, \mathrm{a} 3=0, \mathrm{a} 4=0, \mathrm{Chi}^{\wedge} 2=0.00596, \mathrm{R}^{\wedge} 2=0.99788$. (b) Isosteric heat of CO_{2} adsorption for 1a estimated by the virial equation from the adsorption isotherms at 273 and 298 K .

Fig. S6 CO_{2} adsorption isotherms of $\mathbf{2 a}$ at 298 K with fitting by L-F model: $\mathrm{a}=75.55824, \mathrm{~b}=$ 0.00213 , $\mathrm{c}=0.56069$, Chi^ $\wedge=2.59 \times 10^{-3}, \mathrm{R}^{\wedge} 2=0.99399 ; \mathrm{CH}_{4}$ adsorption isotherms of 2a at 298 K with fitting by L-F model: $\mathrm{a}=1.31743, \mathrm{~b}=0.00339, \mathrm{c}=1.00758$, Chi^ $2=1.28 \times 10^{-7}$, $\mathrm{R}^{\wedge} 2=0.99999$; CO2 adsorption isotherms of $\mathbf{2 a}$ at 273 K with fitting by L-F model: a $=3.10526, \mathrm{~b}=0.10093, \mathrm{c}=0.79582$, Chi^2 $=3.76 \times 10^{-4}, \mathrm{R}^{\wedge} 2=0.99958 ; \mathrm{CH}_{4}$ adsorption isotherms of $\mathbf{2 a}$ at 273 K with fitting by L-F model: $\mathrm{a}=1.66684, \mathrm{~b}=0.00637, \mathrm{c}=0.99014$, Chi^2 $=1.86 \times 10^{-7}, \mathrm{R}^{\wedge} 2=1$.

Fig. S7 IAST adsorption selectivity of $\mathbf{2 a}$ for the $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ mixtures with different components at 273 K .

Fig. $\mathbf{S 8}$ (a) Virial analysis of the CO_{2} adsorption data at 273 K and 298 K for 2a. Fitting results: $\mathrm{a} 0=-4004.85, \mathrm{a} 1=18.31, \mathrm{a} 2=0.0389, \mathrm{a} 3=0, \mathrm{a} 4=0, \mathrm{Chi}^{\wedge} 2=0.01242, \mathrm{R}^{\wedge} 2=$ 0.99748 . (b) Isosteric heat of CO_{2} adsorption for $\mathbf{2 a}$ estimated by the virial equation from the adsorption isotherms at 273 and 298 K .

Fig. S9 Solid-state excitation spectra of $\mathrm{H}_{4} \mathrm{~L}$ ligand, 1 and 2.

Table S1 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$ and 2.

	Complex 1		
$\mathrm{Cd}(1)-\mathrm{O}(1)$	$2.534(6)$	$\mathrm{O}(4) \# 1-\mathrm{Cd}(1)-\mathrm{N}(2) \# 3$	$101.0(2)$
$\mathrm{Cd}(1)-\mathrm{O}(1 \mathrm{~W})$	$2.346(6)$	$\mathrm{O}(8) \# 2-\mathrm{Cd}(1)-\mathrm{O}(1)$	$94.6(2)$
$\mathrm{Cd}(1)-\mathrm{O}(2)$	$2.330(6)$	$\mathrm{O}(8) \# 2-\mathrm{Cd}(1)-\mathrm{O}(1 \mathrm{~W})$	$85.0(2)$
$\mathrm{Cd}(1)-\mathrm{O}(4) \# 1$	$2.282(6)$	$\mathrm{O}(8) \# 2-\mathrm{Cd}(1)-\mathrm{O}(2)$	$146.2(2)$
$\mathrm{Cd}(1)-\mathrm{O}(8) \# 2$	$2.304(6)$	$\mathrm{N}(2) \# 3-\mathrm{Cd}(1)-\mathrm{O}(1)$	$96.2(2)$
$\mathrm{Cd}(1)-\mathrm{N}(2) \# 3$	$2.288(6)$	$\mathrm{N}(2) \# 3-\mathrm{Cd}(1)-\mathrm{O}(1 \mathrm{~W})$	$173.2(2)$
$\mathrm{Cd}(2)-\mathrm{O}(2 \mathrm{~W})$	$2.333(6)$	$\mathrm{N}(2) \# 3-\mathrm{Cd}(1)-\mathrm{O}(2)$	$100.3(2)$
$\mathrm{Cd}(2)-\mathrm{O}(6) \# 4$	$2.189(5)$	$\mathrm{N}(2) \# 3-\mathrm{Cd}(1)-\mathrm{O}(8) \# 2$	$91.2(2)$
$\mathrm{Cd}(2)-\mathrm{O}(7) \# 5$	$2.157(5)$	$\mathrm{O}(6) \# 4-\mathrm{Cd}(2)-\mathrm{O}(2 \mathrm{~W})$	$91.0(2)$
$\mathrm{Cd}(2)-\mathrm{O}(9)$	$\mathrm{O}(6) \# 4-\mathrm{Cd}(2)-\mathrm{O}(9)$	$83.6(3)$	
$\mathrm{Cd}(2)-\mathrm{N}(4)$	$\mathrm{O}(6) \# 4-\mathrm{Cd}(2)-\mathrm{N}(4)$	$113.1(2)$	
$\mathrm{O}(1 \mathrm{~W})-\mathrm{Cd}(1)-\mathrm{O}(1)$	$78.5(2)$	$\mathrm{O}(7) \# 5-\mathrm{Cd}(2)-\mathrm{O}(2 \mathrm{~W})$	$92.9(2)$
$\mathrm{O}(2)-\mathrm{Cd}(1)-\mathrm{O}(1)$	$52.8(2)$	$\mathrm{O}(7) \# 5-\mathrm{Cd}(2)-\mathrm{O}(6) \# 4$	$124.8(2)$
$\mathrm{O}(2)-\mathrm{Cd}(1)-\mathrm{O}(1 \mathrm{~W})$	$80.1(2)$	$\mathrm{O}(7) \# 5-\mathrm{Cd}(2)-\mathrm{O}(9)$	$88.7(3)$
$\mathrm{O}(4) \# 1-\mathrm{Cd}(1)-\mathrm{O}(1)$	$162.5(2)$	$\mathrm{O}(7) \# 5-\mathrm{Cd}(2)-\mathrm{N}(4)$	$120.5(2)$
$\mathrm{O}(4) \# 1-\mathrm{Cd}(1)-\mathrm{O}(1 \mathrm{~W})$	$84.1(2)$	$\mathrm{O}(9)-\mathrm{Cd}(2)-\mathrm{O}(2 \mathrm{~W})$	$174.2(3)$
$\mathrm{O}(4) \# 1-\mathrm{Cd}(1)-\mathrm{O}(2)$	$125.6(2)$	$\mathrm{N}(4)-\mathrm{Cd}(2)-\mathrm{O}(2 \mathrm{~W})$	$98.5(2)$
$\mathrm{O}(4) \# 1-\mathrm{Cd}(1)-\mathrm{O}(8) \# 2$	$82.3(2)$	$\mathrm{N}(4)-\mathrm{Cd}(2)-\mathrm{O}(9)$	$85.4(3)$

Symmetry codes: \#1-x+1, -y+3, -z+1; \#2 -x, -y+2, -z+1; \#3-x, -y+3,-z+1; \#4-x, -y, -z+2; \#5 x+1, y, z; \#6 x-1, y, z.

Complex 2

$\mathrm{Zn}(1)-\mathrm{O}(2) \# 1$	$1.925(5)$	$\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{O}(1 \mathrm{~W})$	$94.6(3)$
$\mathrm{Zn}(1)-\mathrm{N}(1)$	$1.976(6)$	$\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{O}(1 \mathrm{~W})$	$100.9(3)$
$\mathrm{Zn}(1)-\mathrm{O}(3) \# 2$	$1.900(5)$	$\mathrm{O}(3) \# 2-\mathrm{Zn}(1)-\mathrm{O}(2) \# 1$	$119.3(2)$
$\mathrm{Zn}(1)-\mathrm{O}(1 \mathrm{~W})$	$2.006(6)$	$\mathrm{O}(3) \# 2-\mathrm{Zn}(1)-\mathrm{N}(1)$	$118.2(2)$
$\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{N}(1)$	$115.3(2)$	$\mathrm{O}(3) \# 2-\mathrm{Zn}(1)-\mathrm{O}(1 \mathrm{~W})$	$101.4(3)$

Symmetry codes: \#1 -x+1, -y+2, -z; \#2 x, -y+3/2, z-1/2; \#3 -x+2, -y+1, -z; \#4 x, -y+3/2, $\mathrm{z}+1 / 2$.

