Supporting information

A supramolecular assembling of metal-free organic dye with

zinc porphyrin chromophore for dye-sensitized solar cells

Hai-Lang Jia,*^{ab} Mao-Zhan Huang,^a Zhi-Jie Peng,^a Dong-Ming Wang,^a Guo-Hua Zhang^a and Ming-Yun Guan^a

^aSchool of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China, E-mail: jiahailang85@126.com.
^bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China.

General information

All solvents were treated by standard methods before use and all chemicals were purchased from commercial suppliers and used without further purification unless indicated otherwise. *N*, *N*-Dimethylformamide (DMF) and tetrahydrofuran (THF) were dried and distilled from CaH₂.

The ¹H NMR spectra were recorded on a Bruker DRX (400, 500 MHz) NMR spectrometer with tetramethylsilane (TMS) as the internal standard.

Fabrication of DSSCs

The photoanode was prepared by screen printing the TiO_2 paste on FTO glass plates (the TiO₂ paste, FTO glass plates and Pt counter electrode are all purchased from Dalian QiSeGuang solar technology development co., LTD, Dalian, P. R. China) The TiO₂ paste consists of 12 μ m thick film (particle size, 20 nm, pore size 32 nm). The TiO₂ films were performed with a programmed procedure: (1) 80 $^{\circ}$ C for 15 min; (2) 135°C for 10 min; (3) 325°C for 30 min; (4) 375°C for 5 min; (5) 450°C for 15 min, and (6) 500°C for 15 min. Then the films were treated again with TiCl₄ at 70°C for 30 min and sintered at 500°C for 30 min. Then the photoanodes were immersed into JH1 solution (0.3 mM of JH1, THF/EtOH=1/1) for 18 h at room temperature and washed with absolute ethanol. Immediately following, the photoanodes were immersed into P1 and P2 solution (0.2 mM, THF/EtOH=1/4) for 24 h, and supramolecular self-assembly was performed. The photoanode and the Pt counter electrode were then sealed with a Surlyn film (60 µm) by heating the sandwich-type cell at 120°C. The electrolyte was introduced through pre-drilled holes in the counter electrode and was driven into the cell via vacuum backfilling, and the hole was sealed with a Surlyn film and a thin glass (0.1 mm thickness) cover by heating. The electrolyte was composed of 0.6 M 1-butyl-3-methylimidazolium iodide (BMII), 50 mM I₂, 50 mM LiI, 0.5 M tert-butylpyridine and 0.1 M guanidiniumthiocyanate (GuNCS) in acetonitrile.

Characterizations of DSSCs

The photocurrent-voltage (I-V) curves of the DSSCs were measured on a Keithley 2400 source meter under standard global AM 1.5G solar irradiation supplied by a xenon light source (Oriel). The incident photo-to-electron conversion efficiency (IPCE) spectra of the DSSCs were measured by a DC method. The light source was a 300 W xenon lamp (Oriel 6258) coupled with a flux controller to improve the stability of the irradiance. The single wavelength was selected by a monochromator (Cornerstone 260 Oriel74125). Light intensity was measured by a NREL traceable Si detector (Oriel 71030NS) and the short circuit currents of the DSSCs were measured by an optical power meter (Oriel 70310).

UV-Vis spectra, electrochemical properties and measurement of dye loading

The UV-Vis absorption spectra were recorded on a Shimadzu UV-3600 spectrometer. The cyclic voltammograms and electrochemical impedance spectroscopy were studied using a Chenhua CHI660D model Electrochemical Workstation (Shanghai).

The dye loading on the TiO_2 films were measured by a Shimadzu UV-3600 spectrometer. The sensitized electrodes were immersed into a 0.1 M NaOH solution in a mixed solvent (H₂O/DMF=1/4), which resulted in desorption of each dye.

Synthesis

Scheme S1 synthesis procedure of P1, P2 and JH1. Reagents and conditions: a) i: NBS, DCM; ii: Zn(OAc)₂.2H₂O,
b) triisopropylacetylene, Pd(PPh₃)₂Cl₂, CuI, THF, Et₃N, c) pyridine, NBS, DCM, d) 2-Thiopheneboronic acid,
Pd(PPh₃)₄, K₂CO₃, H₂O, 1, 4-dioxane, e) Pyridine-4-boronic acid, Pd(PPh₃)₄, K₂CO₃, H₂O, 1, 4-dioxane, f) i: NBS,
DMF; ii: Methyl 4-boronobenzoate, Pd(PPh₃)₄, K₂CO₃, H₂O, 1, 4-dioxane; iii: EtOH, H₂O, NaOH.

Synthesis of P1

Compound 1 (7 g, 7.2 mmol) was dissolved in DCM (3 L), cooled the temperature to 0°C, then NBS (1.34 g, 7.5 mmol) was added in drops slowly.^[S1] After 6 h, the reaction mixture was quenched by acetone, and the solvent was evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM/PE=1/4) to give the intermediate, then dissolved in DCM (600 mL) and MeOH (300 mL), and added Zn(OAc)₂.2H₂O (9.6 g, 43.6 mmol), the solution was stirred at room temperature for 3 h. Then, the mixture was extracted by DCM (3×100 mL), the combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo to give P1 (5 g, 63%) ¹H NMR (CDCl₃, 500 MHz): δ , [ppm]: 10.10 (s, 1H), 9.73 (d, *J* = 4.5Hz, 2H), 9.27 (d, *J* = 4.5Hz, 2H), 9.01 (t, *J* = 4.5Hz, 4H), 7.73 (t, *J* = 8.0Hz, 2H), 7.05 (d, *J* = 8.5Hz, 4H), 3.86 (t, *J* = 6.5Hz, 8H), 0.93-0.98 (m, 8H), 0.77-0.84 (m, 8H), 0.34-0.61 (m, 44H).

Synthesis of compound 2

Under an nitrogen, P1 (4.5 g, 4 mmol), Triisopropylsilylacetylene (1.8 mL, 10 mmol), and CuI (0.24 g, 1.2 mmol) were added in THF (150 mL) and Et₃N (25 mL), then Pd(PPh₃)₂Cl₂ (0.55 g, 0.8 mmol) was added. The mixture was heated under 80°C for 4 h. The reaction mixture was cooled to room temperature and extracted by EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM/PE=1/4) to give the compound 2 (4 g, 81%)° ¹H NMR (CDCl₃, 400 MHz): δ , [ppm]: 10.08 (s, 1H), 9.78 (s, 2H), 9.24 (s, 2H), 8.96-8.99 (m, 4H), 7.65 (t, *J* = 8.4Hz, 2H), 6.97 (d, *J* = 8.8Hz, 4H), 3.81 (s, 8H), 1.39-1.572 (m, 21H), 0.90-0.93 (m, 8H), 0.71-0.74 (m, 8H), 0.33-0.52 (m, 44H).

Synthesis of P2

Compound 2 (4 g, 3.27 mmol) was dissolved in DCM (1 L), then added pyridine (50 mL) and NBS (0.68 g, 3.90 mmol), the mixture was stirred at room temperature for 1 h. The reaction mixture was quenched by acetone and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/DCM=4/1) to give P2 (3.2 g, 75%). ¹H NMR (CDCl₃, 500 MHz): δ , [ppm]: 9.71 (d, *J* = 4.5Hz, 2H), 9.64 (d, *J* = 4.5Hz, 2H), 8.92 (d, *J* = 4.5Hz, 2H), 8.89 (d, *J* = 4.5Hz, 2H), 7.71 (t, *J* = 8.5Hz, 2H), 7.02 (d, *J* = 8.5Hz, 4H), 3.85 (t, *J* = 6.5Hz, 8H), 1.43-1.53 (m, 21H), 0.94-1.00

Synthesis of compound 4

Under an nitrogen, compound 3 (6 g, 12.45 mmol), 2-Thiopheneboronic acid (1.6 g, 12.45 mmol), K₂CO₃ (5.16 g, 37.14 mmol) and Pd(PPh₃)₄ (0.5 g) were dissolved in 1, 4-dioxane (100 mL) and H₂O (20 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and extracted by CH₂Cl₂ (3×100 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo, the residue was purified by silica gel column chromatography (PE) to give compound 4 (3 g, 50%). ¹H NMR (CDCl₃, 400 MHz): δ , [ppm]: 7.47-7.51 (m, 2H), 7.33-7.37 (m, 4H), 7.23-7.25 (m, 2H), 7.02-7.07 (m, 3H), 6.94-6.98 (m, 4H).

Synthesis of compound 5

Under an nitrogen, compound 4 (3 g, 6.18 mmol), Pyridine-4-boronic acid (1.52 g, 12.37 mmol), K₂CO₃ (4.27 g, 30.91 mmol) and Pd(PPh₃)₄ (0.5 g) were dissolved in 1, 4-dioxane (50 mL) and H₂O (10 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and extracted by CH₂Cl₂ (3×100 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo, the residue was purified by silica gel column chromatography (EA) to give compound 5 (1.4 g, 47%). ¹H NMR (CDCl₃, 400 MHz): δ , [ppm]: 8.63-8.65 (m, 4H), 7.56-7.60 (m, 6H), 7.51-7.52 (m, 4H), 7.24-7.29 (m, 6H), 7.18-7.20 (m, 2H), 7.08-7.10 (m, 1H).

Synthesis of JH1

To a solution of compound 5 (1.2 g, 2.49 mmol) in DMF (10 mL) was added NBS (0.49 g, 2.74 mmol) in one portion, the mixture was stirred at room temperature for 12 h, then 100 mL H₂O was added, and extracted by CH₂Cl₂ (3×30 mL), the combined organic layers were evaporated in vacuo. Then, the residue, Methyl 4-boronobenzoate (0.67 g, 3.74 mmol), K₂CO₃ (1.03 g, 7.47 mmol) and Pd(PPh₃)₄ (0.4 g) were dissolved in 1, 4-dioxane (50 mL) and H₂O (10 mL) under N₂. The mixture was

heated under 90°C for overnight. The reaction mixture was cooled to room temperature and extracted by CH₂Cl₂ (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo, the residue was purified by silica gel column chromatography (EA). Then the residue was added in EtOH (20 mL), THF (20 mL) and H₂O (30 mL), and then added NaOH (0.6 g). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the residue was acidified with diluted HCl, then filtered and recrystallization from MeOH/Ether to give JH1 (0.8 g, 53%). ¹H NMR (DMSO-*d6*, 400 MHz): δ , [ppm]: 8.60-8.61 (m, 4H), 7.93-7.95 (m, 2H), 7.87-7.89 (m, 2H), 7.81-7.83 (m, 3H), 7.73-7.75 (m, 2H), 7.69-7.71 (m, 4H), 7.29-7.41 (m, 3H), 7.17-7.23 (m, 4H), 7.07-7.09 (m, 2H).

Fig. S1 Comparison of P1 and P2 before and after sensitization

Fig. S2 Absorption spectra of TiO_2 before and after the immersion into P1 and P2 solutions

Fig. S3 Comparison of P1 and P2 before and after supramolecular self-assembly

Fig. S4 Cyclic voltammogram of **JH1**, **JH1+P1** and **JH1+P2** in DMF, 0.1 M TBAPF₆, photoanode as working electrode, Pt as counter electrode, Ag/Ag^+ as reference electrode, scan rate: 100 mV s⁻¹, calibrated with ferrocene/ferrocenium (Fc/Fc⁺) as an external reference.

Fig. S5 Histogram of the power conversion efficiencies (PCE) of DSSCs

References

[S1] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, *Science*, 2011, 334, 629.