Tuning the Cytotoxicity of Ruthenium(II) para-Cymene Complexes by

Mono-Substitution at a Triphenylphosphine/

Phenoxydiphenylphosphine Ligand

Lorenzo Biancalana,^a Stefano Zacchini,^b Nicola Ferri,^c Maria Giovanna Lupo,^c Guido Pampaloni,^a

and Fabio Marchetti^{a,*}

^a Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.

^b Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.

^c Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy.

Supporting Information

Table of contents	Page
Table 1S. Comparison of IR and NMR data	S2
Synthesis and spectroscopic characterization of $Ph_2P(4-C_6H_4Br)$	S 3
Spectroscopic characterization of ligands/intermediates	S 4
Reactivity of $Ph_2P(O(2-C_6H_4SiMe_2'Bu))$ with HCl	S 6
Synthesis and characterization of $[Ru(C_2O_4)(\eta^6-p-cymene)(H_2O)]$	S 8
Synthesis and characterization of [RuCl ₂ (η^6 - <i>p</i> -cymene)(κP -PPh ₃)]	S 9
Synthesis and characterization of $[Ru(C_2O_4)(\eta^6-p-cymene)(\kappa P-PPh_3)]$	S10
Figures 1S-8S. IR spectra of Ru complexes	S 11
Figures 9S-35S. ¹ H/ ¹³ C/ ²⁹ Si/ ³¹ P NMR spectra of Ru complexes	S19
Stability studies in DMSO/water solutions	S46
Stability studies in chloroform solutions	S59
Tables 12S-15S. Selected bond distances (Å) and angles (°) for 3-6	S60
Table 16S . Crystal data and collection details for $3 \cdot CH_3COCH_3$, 4, 5 and $6 \cdot C_6H_{14}$.	S62

	IR	IR ^[a] : Ũ/cm ⁻¹			NMR ^[b] : δ/ppm			
Compound	v(C=O) 1	v(O-Ar) ²	v(P-O) ²	¹³ C δ(CO ₂)	³¹ Ρ (Δ _{complex} δ) ^[c]	²⁹ Si		
Ph₂P(4-C ₆ H₄OSiMe₂′Bu)	-	1174m	-	-	-6.8	21.2		
1	-	1176s	-	-	23.2 (+30.0)	21.7		
Ph ₂ P(4-C ₆ H ₄ Br)	-	-	-	-	-6.5	-		
2	-	-	-	-	24.4 (+30.9)	-		
[RuCl ₂ (η^6 -p-cymene){ κ P-Ph ₂ P(4-C ₆ H ₄ OH)}] ³	-	1178s	-	-	22.9	-		
Cl ₂ CHCO ₂ H	1731s	-	-	170.3	-	-		
3	1785m-sh, 1768m	1168s	-	162.5	24.0	-		
Ph₂P(OPh)	-	1218s	868s	-	110.7	-		
4	-	1208s	889s	-	113.7 (+3.0)	-		
Ph₂P(O(2-C₀H₄SiMe₂ ^t Bu))	-	1200s	870s	-	108.3	3.3		
5	-	1185s	885s	-	120.3 (+12.0)	3.0		
6	1697s, 1674s, 1666s-sh	1180s	892s	165.4	124.3 (+16.0)	3.4		
PPh ₃ ⁴	-	-	-	-	-4.7	-		
[RuCl₂(η ⁶ - <i>p</i> -cymene)(κ <i>Ρ</i> -PPh₃)]	-	-	-	-	24.2 (+28.9)	-		
[Ru(C₂O₄)(η ⁶ - <i>p</i> -cymene)(κ <i>P</i> -PPh₃)]	1688s, 1666s, 1652s	-	-	167.1	29.8 (+34.5)	-		
[(Ru(C₂O₄)(η ⁶ - <i>p</i> -cymene)(H₂O)]	1687w-sh, 1665s	-	-	166.9	-	-		

Table 1S. Comparison of selected IR and NMR data for ruthenium complexes and related compounds.

[a] Solid-state or liquid film (Cl₂CHCO₂H). [b] CDCl₃ solution except [RuCl₂(η^6 -*p*-cymene){ κ *P*-Ph₂P(4-C₆H₄OH)}] (DMSO-d₆) and [Ru(C₂O₄)(η^6 -*p*-cymene)(H₂O)] (D₂O). [c] Chemical shift difference upon complexation: $\Delta_{complex}\delta = \delta$ (M-PR₃) - δ (PR₃).

¹ J. Fujita, A. E. Martell and K. Nakamoto, J. Chem. Phys., 1962, 36, 324-331.

² J. Chatt and B. T. Heaton, *Spectrochim. Acta A*, 1967, **23**, 2220-2221.

³ L. Biancalana, L. K. Batchelor, A. De Palo, S. Zacchini, G. Pampaloni, P. J. Dyson and F. Marchetti, *Dalton Trans.*, 2017, 46, 12001-12004.

⁴ J. Schraml, M. Capka and V. Blechta, *Magn. Reson. Chem.*, 1992, **30**, 544-547.

Synthesis and spectroscopic characterization of Ph₂P(4-C₆H₄Br).⁵

Chart 1S. Structure of Ph₂P(4-C₆H₄Br) (numbering refers to carbon atoms).

In a 50 mL Schlenk tube, n-BuLi (2.6 mL of a 2.5 M solution in hexanes, 6.5 mmol) was slowly added (15') to a solution of 1,4-dibromobenzene (1.250 g, 5.30 mmol) in Et₂O (15 mL), at -50 °C under vigorous stirring. The reaction mixture was stirred for 1 hour and allowed to warm up to -5 °C affording a pale yellow solution. Therefore Ph₂PCl (1.1 mL, 6.0 mmol) was slowly added (10') at -50 °C and the resulting yellow solution was allowed to reach ambient temperature. The slow formation of a colourless precipitate (LiCl) was observed. The suspension was stirred for 14 hours then filtered on a short silica pad (h 3 cm, d 4 cm), thus the product was eluted with Et₂O. A yellow oily residue was obtained after volatiles removal under vacuum. Addition of MeOH (5 mL) under vigorous stirring resulted in the formation of a colourless solid. The liquid was removed and the solid was washed with few mL of MeOH and dried under vacuum (40 °C). Yield: 1.01 g, 56%. Anal. Calcd. for C₁₈H₁₄BrP: C, 63.37; H, 4.14. Found: C, 63.25; H, 4.20. IR (solid state): $\tilde{v}/cm^{-1} = 3065w$, 3045w, 3025w, 3013w, 3000w, 1970-1660w, 1639w, 1581w, 1571w, 1475m, 1433m, 1380m, 1351w, 1326w, 1307w, 1296w, 1259w, 1205w, 1180w, 1156w, 1118w, 1088m, 1068m, 1026w, 1009m, 998w-sh, 913w, 849w, 818s, 744s, 722s, 694s. ¹H NMR (CDCl₃): δ /ppm = 7.47 (d, ³J_{HH} = 7.7 Hz, 2H, C2-H), 7.39–7.33 (m, 6H, C7-H + C8-H), 7.33–7.28 (m, 4H, C6-H), 7.17 (t, ${}^{3}J_{HH} = {}^{3}J_{HP}$ = 7.6 Hz, 2H, C3-H). ¹³C{¹H} NMR (CDCl₃): δ /ppm = 136.7 (d, ¹J_{CP} = 11 Hz, C5), 136.6 (d, ¹J_{CP} = 12 Hz, C4), 135.4 (d, ${}^{2}J_{CP} = 20$ Hz, C3), 133.8 (d, ${}^{2}J_{CP} = 20$ Hz, C6), 131.8 (d, ${}^{3}J_{CP} = 7$ Hz, C2), 129.1 (C8), 128.8 (d, ${}^{3}J_{CP} = 7$ Hz, C7), 123.5 (C1). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃): $\delta/ppm = -6.5$.

⁵ R.A. Baldwin and M. T. Cheng, J. Org. Chem., 1967, 32, 1572-1577.

Spectroscopic characterization of ligands/intermediates.

1) Ph₂P(4-C₆H₄OSiMe₂'Bu).³

Chart 2S. Structure of Ph₂P(4-C₆H₄OSiMe₂^{*t*}Bu) (numbering refers to carbon atoms).

Colourless solid. Anal. Calcd. for C₂₄H₂₉OPSi: C, 73.43; H, 7.45. Found: C, 73.64; H, 7.41. IR (solid state): $\tilde{\nu}$ /cm⁻¹ = 3067w, 3054w, 2954w, 2927w, 2893w, 2855w, 1592m, 1496m, 1462m, 1471m, 1432m, 1403w, 1389w, 1360w, 1324w, 1277s, 1258s, 1174m (v_{O-Ar}), 1098m, 1068w, 1025w, 1007w, 912s, 830s, 804s, 779s, 744s, 695s, 672m. ¹H NMR (CDCl₃): δ /ppm = 7.38 (s, 10H, PPh₂), 7.32 (t, ³*J*_{HH} = ³*J*_{HP} = 7.0 Hz, 2H, C6-H), 6.93 (d, ³*J*_{HH} = 8.1 Hz, 2H, C5-H), 1.08 (s, 9H, C1-H), 0.30 (s, 6H, C3-H). ¹³C{¹H} NMR (CDCl₃): δ /ppm = 156.7 (C4), 138.0 (d, ¹*J*_{CP} = 11 Hz, C8), 135.6 (d, ²*J*_{CP} = 21 Hz, C6), 133.6 (d, ²*J*_{CP} = 19 Hz, C9), 128.6 (C11), 128.5 (d, ³*J*_{CP} = 6 Hz, C10), 120.4 (d, ³*J*_{CP} = 7 Hz, C5), 25.8 (C1), 18.3 (C2), 1.2 (C3). ³¹P{¹H} NMR (CDCl₃): δ /ppm = -6.8. ²⁹Si{¹H} NMR (CDCl₃): δ /ppm = 21.2.

2) Ph₂P(OPh).

Chart 3S. Structure of Ph₂P(OPh) (numbering refers to carbon atoms).

Colourless paste. IR (solid state): $\tilde{\nu}/cm^{-1} = 3070w$, 3054w, 3036w, 3003w, 1970-1770w, 1593m, 1584m, 1573m-sh, 1490s, 1478s, 1456w, 1433m, 1392w, 1328w, 1307w, 1285w, 1218s (ν_{P-O-Ar}), 1179m, 1166m, 1092m, 1070m, 1024m, 998m, 920w, 913w, 868s (ν_{P-O-Ar}), 829m-sh, 758s, 746s-sh, 739s, 721s, 687s. ¹H NMR (CDCl₃): δ /ppm = 7.58 (td, ${}^{3}J_{HH} = {}^{3}J_{HP} = 7.6$ Hz, ${}^{4}J_{HH} = 1.9$ Hz, 4H, C6-H), 7.41–7.34 (m, 6H, C7-H + C8-H), 7.28–7.22 (m, 2H, C2-H), 7.14–7.10 (m, 2H, C3-H), 7.00 (t, ${}^{3}J_{HH} = 7.3$ Hz, 1H, C1-H). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ /ppm = 157.5 (d, ${}^{2}J_{CP} = 10$ Hz, C4), 141.0 (d, ${}^{1}J_{CP} = 17$ Hz, C5), 130.7 (d, ${}^{2}J_{CP} = 23$ Hz, C6), 129.9 (C2/C8), 129.7 (C2/C8), 128.6 (d, ${}^{3}J_{CP} = 7$ Hz, C7), 122.7 (C1), 119.0 (d, ${}^{3}J_{CP} = 11$ Hz, C3). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃): δ /ppm = 110.7.

3) Cl₂CHCO₂H and Cl₂CHCOCl.

Chart 4S. Structures of Cl₂CHCO₂H (left) and Cl₂CHCOCl (right) (numbering refers to carbon atoms).

*Cl*₂*CHCO*₂*H*. Colourless liquid. IR (liquid film): $\tilde{v}/cm^{-1} = 3300-2800w$ -br, 3120w, 3018m, 2912w, 2689w, 2578w, 1731s (v_{C=0}), 1416 m, 1276 m, 1239m, 1191m, 919w, 816s, 775 m, 675m. IR (CH₂Cl₂): $\tilde{v}/cm^{-1} = 3460m$ -br, 1778s-sh, 1744s (v_{C=0}). ¹H NMR (CDCl₃): δ /ppm = 11.3 (s, 1H, OH), 6.01 (s, 1H, C2-H). ¹³C{¹H} NMR (CDCl₃): δ /ppm = 170.3 (C1), 63.8 (C2).

 $Cl_2CHCOCl$. This compound was prepared by two different methods. A) In a 50 mL Schlenk tube, (COCl)₂ (0.10 mL, 1.2 mmol) and one drop of DMF were added to a solution of Cl₂CHCO₂H (20 μ L, 0.24 mmol) in CDCl₃ (3 mL). The resulting colourless solution was stirred at ambient temperature for 3.5 hours. ¹H NMR spectrum of this solution indicated the complete conversion to the acyl chloride [¹H NMR (CDCl₃): δ /ppm = 6.12 (s, 1H, C2-H)]. B) A solution of Cl₂CHCO₂H (0.15 mL, 1.8 mmol) in CH₂Cl₂ (7 mL) was treated with PCl₅ (362 mg, 1.74 mmol). The resulting colourless solution was stirred at ambient temperature overnight. IR spectrum of this solution indicated the complete conversion to the acyl chloride [IR (CH₂Cl₂): $\tilde{v}/cm^{-1} = 1804s$ (v_{C=O}), 1778s].

Reactivity of $Ph_2P(O(2-C_6H_4SiMe_2'Bu))$ with HCl: synthesis of $2-C_6H_4(OH)(SiMe_2'Bu)$ and Ph_2PO_2H (diphenylphosphinic acid).

Chart 5S. Structures of $2-C_6H_4(OH)(SiMe_2^{T}Bu)$ (left) and Ph₂PO₂H (right) (numbering refers to carbon atoms).

In a 100-mL round-bottom Schlenk flask, $Ph_2P(O(2-C_6H_4SiMe_2'Bu))$ (3.12 g, 7.96 mmol) was dissolved in a Et₂O/THF mixture (1:1 ν/ν , 30 mL) and treated with 37% HCl (1.35 mL, ca. 16 mmol) at 0 °C. The resulting pale yellow solution was allowed to heat to ambient temperature and stirred overnight. Therefore, O₂-free H₂O (15 mL) was added, and the massive precipitation of a colourless solid occurred. The suspension was filtered and the solid (Ph₂PO₂H) was washed with Et₂O and dried under vacuum. Volatiles were removed under vacuum from the filtrate mixture. The pale yellow oily residue was loaded on top of a silica column (h 4.5 cm, d 3.5 cm); impurities were eluted with petroleum ether and the title compound was eluted with CH₂Cl₂. Volatiles were removed under vacuum (50 °C) and a colourless solid (2-C₆H₄(OH)(SiMe₂'Bu)) was obtained.

 Ph_2PO_2H .⁶ Colourless needle-shaped crystalline material. Insoluble in chlorinated solvents, soluble in DMSO. IR (solid state): $\tilde{v}/cm^{-1} = 3078w$, 3057w, 2800-2500w-br, 2400-1800w-br, 1646m-br, 1588m, 1484m, 1438s, 1398w, 1338w, 1315w, 1224w, 1177m, 1152m, 1121s, 1069m, 1027m, 976s-

⁶ Integrated Spectral Database System of Organic Compounds, National Institute of Advanced Industrial Science and Technology, <u>http://sdbs.db.aist.go.jp</u>

sh, 957s, 931s-sh, 862m-sh, 754m, 726s, 691s. ¹H NMR (DMSO-d₆): δ/ppm = 7.82–7.59 (m, 4H), 7.57–7.35 (m, 6H). ³¹P{¹H} NMR (DMSO-d₆): δ/ppm = 25.8.

2- $C_6H_4(OH)(SiMe_2{}^{t}Bu)$.⁷ Colourless crystalline solid. Yield: 1.32 g, 80%. Anal. Calcd. for C₁₂H₂₀OSi: C, 69.17; H, 9.67. Found: C, 69.38; H, 9.72. IR (solid state): $\tilde{v}/cm^{-1} = 3513m$ (v_{OH}), 2954m, 2926m, 2882w, 2854m, 1591m, 1570w, 1487w, 1469w, 1460w, 1436m-sh, 1427s, 1389w, 1361w, 1325s, 1278s, 1253s, 1238m-sh, 1223w, 1190m-sh, 1177m, 1120s, 1096m, 1070s, 1006m, 939w, 830s, 821s, 807s, 774s, 760s, 723m, 687s, 654w. ¹H NMR (CDCl₃): δ /ppm = 7.55 (dd, ³*J*_{HH} = 7.3 Hz, ⁴*J*_{HH} = 1.6 Hz, 1H, C5-H), 7.39 (dt, ³*J*_{HH} = 7.9 Hz, ⁴*J*_{HH} = 1.7 Hz, 1H, C7-H), 7.10 (t, ³*J*_{HH} = 7.2 Hz, 1H, C6-H), 6.80 (d, ³*J*_{HH} = 8.0 Hz, 1H, C8-H), 5.02 (s, 1H, OH), 1.12 (s, 9H, C1-H), 0.53 (s, 6H, C3-H). ¹³C{¹H} NMR (CDCl₃): δ /ppm = 160.5 (C9), 136.8 (C5), 130.7 (C7), 122.7 (C4), 120.3 (C6), 115.0 (C8), 27.1 (C1), 17.8 (C2), -4.5 (C3). ²⁹Si{¹H} NMR (CDCl₃): δ /ppm = 3.2.

Hydrolysis of $Ph_2P(O(2-C_6H_4SiMe_2^{t}Bu))$ was also observed upon exposure of the solid to air for 24 hours, affording $Ph_2P(O(2-C_6H_4SiMe_2^{t}Bu))$ along with other products not including Ph_2PO_2H .

 ^{7 (}a) M. Fukui, T. Ikeda and T. Oishi, *Chem. Pharm. Bull.*, 1983, **31**, 466-475; (b) K I. O'Connor, S.-J. Wey and C. J. Burrows, *Tetrahedron Lett.*, 1992, **33**, 1001-1004.

Synthesis and characterization of $[Ru(C_2O_4)(\eta^6-p-cymene)(H_2O)].^8$

Chart 6S. Structure of $[Ru(C_2O_4)(\eta^6-p-cymene)(H_2O)]$ (numbering refers to carbon atoms).

Step 1. A solution of AgNO₃ (706 mg, 4.16 mmol) in H₂O (2 mL) was added dropwise to a solution of Na₂C₂O₄ (278 mg, 2.07 mmol) in H₂O (10 mL), causing the precipitation of Ag₂C₂O₄. The suspension was stirred at ambient temperature for 30' under protection from the light. Therefore, the mixture was centrifuged and the solution removed from the colourless precipitate. The solid was suspended in few mL of H₂O, separated by centrifugation and directly used for the following reaction. Step 2. A solution of $[RuCl_2(\eta^6-p-cymene)]_2$ (212 mg, 0.346 mmol) in a MeOH:CH₂Cl₂ mixture (1:1 v/v, 4 mL) was added to a suspension of Ag₂C₂O₄ (theor. 2.07 mmol) in H₂O (10 mL). The mixture was stirred at ambient temperature for 14 hours under protection from the light. Therefore, the suspension was filtered on a small pad of celite and the precipitate was washed with H₂O until colourless. Volatiles were removed under vacuum from the yellow filtrate solution and the oily residue was dissolved in CH₂Cl₂. The title compound was obtained as a yellow solid upon filtration and solvent removal under vacuum (40 °C) and then stored under N₂. Yield: 220 mg, 93%. IR (solid state): v/cm⁻¹ = 3460w-br (v_{OH}), 3063w, 2964w, 2930w, 2874w, 1690s (v_{C=O}), 1667s (v_{C=O}), 1633ssh, 1592s, 1566s, 1471m-sh, 1415s (vc-o), 1387m (vc-o), 1325w, 1263s, 1202w, 1161w, 1115w, 1091w, 1057w, 1034w, 1005w, 902w-sh, 875m, 789s, 731w, 694w, 669w. ¹H NMR (D₂O): δ/ppm = 5.84 (d, ${}^{3}J_{HH} = 6.1$ Hz, 2H, C3-H/C4-H), 5.59 (d, ${}^{3}J_{HH} = 6.1$ Hz, 2H, C3-H/C4-H), 2.86 (hept, ${}^{3}J_{HH} =$ 7.1 Hz, 1H, C6-H), 2.23 (s, 3H, C1-H), 1.31 (d, ${}^{3}J_{HH} = 6.9$ Hz, 6H, C7-H). ${}^{13}C{}^{1}H{}$ NMR (D₂O): 166.9 (C8), 99.5 (C5), 97.1 (C2), 80.4 (C3/C4), 77.5 (C3/C4), 31.0 (C6), 21.8 (C7), 17.8 (C1).

⁸ W. H. Ang, E. Daldini, C. Scolaro, R. Scopelliti, L. Juillerat-Jeannerat and P. J. Dyson, *Inorg. Chem.*, 2006, 45, 9006-9013.

Chart 7S. Structure of Ru-PPh₃ (numbering refers to carbon atoms).

In a 100-mL round bottom Schlenk flask, [RuCl₂(η⁶-*p*-cymene)RuCl₂]₂ (218 mg, 0.356 mmol) and PPh₃ (234 mg, 0.892 mmol) were dissolved in CHCl₃ (30 mL). The brick red solution was heated under reflux for 24 hours and the progress of reaction was checked by TLC. Therefore, the reaction mixture was cooled to ambient temperature and volatiles were removed under vacuum. The brownred residue was suspended in Et₂O (10 mL) with vigorous stirring. The suspension was filtered and the solid washed with Et₂O and dried under vacuum (40 °C). Yield: 360 mg, 89%. The compound is soluble in DMSO and chlorinated solvents, poorly soluble in Et₂O and insoluble in H₂O and hexane. Mp: dec. 142 °C (darkens). IR (solid state): $\tilde{\nu}/cm^{-1} = 3048w$, 2981w, 2973w, 2958w, 2925w, 2903w, 2869w, 1587w, 1573w, 1542w, 1501w, 1483m, 1470m, 1458w, 1445w-sh, 1435s, 1387m, 1376w, 1361w, 1326w, 1187w, 1159w, 1101w-sh, 1087m, 1073w, 1058m, 1035m, 1027m, 1003w, 995wsh, 969w, 891w, 869m, 845w, 799w, 754m, 742s, 707m-sh, 693s, 674m-sh. UV-Vis (CH₂Cl₂, c = 10^{-3} M): $\lambda_{\text{max}}/\text{nm}$ ($\epsilon/\text{M}^{-1}\cdot\text{cm}^{-1}$) = 375 (1.1 \cdot 10³), 478sh (6.5 \cdot 10²). ¹H NMR (CDCl₃): δ/ppm = 7.82 (pseudo-t, ${}^{3}J_{HH} = {}^{3}J_{HP} = 8.6$ Hz, 6H, C9-H), 7.41–7.31 (m, 9H, C10-H + C11-H), 5.19 (d, ${}^{3}J_{HH} = 4.5$ Hz, 2H, C3-H/C4-H), 4.99 (d, ${}^{3}J_{HH} = 4.1$ Hz, 2H, C3-H/C4-H), 2.84 (hept, ${}^{3}J_{HH} = 6.7$ Hz, 1H, C6-H), 1.86 (s, 3H, C1-H), 1.09 (d, ${}^{3}J_{HH} = 6.7$ Hz, 6H, C7-H). ${}^{13}C{}^{1}H$ NMR (CDCl₃): $\delta/ppm = 134.3$ (d, ${}^{2}J_{CP} = 9$ Hz, C9), 133.8 (d, ${}^{1}J_{CP} = 46$ Hz, C8), 130.2 (C11), 128.0 (d, ${}^{3}J_{CP} = 10$ Hz, C10), 111.0 $(d, {}^{2}J_{CP} = 2 Hz, C5), 96.0 (C2), 89.1 (d, {}^{2}J_{CP} = 3 Hz, C3/C4), 87.2 (d, {}^{2}J_{CP} = 5 Hz, C3/C4), 30.2 (C6),$ 21.9 (C7), 17.8 (C1). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃): $\delta/ppm = 24.2$

⁹ E. E. Joslin, C. L. McMullin, T. B. Gunnoe, T. R. Cundari, M. Sabat and W. H. Myers, *Inorg. Chem.*, 2012, **51**, 4791-4801.

Chart 8S. Structure of Ru-PPh₃-O (numbering refers to carbon atoms).

Freshly prepared $[Ru(C_2O_4)(\eta^6-p-cymene)(H_2O)]$ (108 mg, 0.317 mmol) and PPh₃ (84 mg, 0.320 mmol) were dissolved in CH₂Cl₂ (10 mL). The resulting yellow-orange solution was stirred at ambient temperature for 3 hours and the progress of reaction was checked by TLC. Therefore the solution was filtered, volatiles were removed under vacuum and the residue was dissolved in a small volume of CH₂Cl₂. Addition of Et₂O under vigorous stirring caused the precipitation of a yellow solid. The suspension was filtered; the solid was washed with Et_2O and dried under vacuum (40 °C). Yield: 170 mg, 91%. The title compound is soluble in DMSO, MeOH and chlorinated solvents, poorly soluble in acetone and insoluble in Et₂O, hexane and H₂O. IR (solid state): $\tilde{\nu}/cm^{-1} = 3077w$ sh, 3058w, 2967w, 2876w, 1688s, 1666s and 1652s (v_{C=O}), 1586w, 1573w, 1504w, 1482m, 1469m, 1434m, 1356s (v_{C-O}), 1324m-sh, 1280w, 1227w, 1187w, 1159w, 1098m, 1092m, 1056w, 1036w, 998w, 953w, 909w, 896w, 849m, 800w, 782m, 748m, 696s. ¹H NMR (CDCl₃): δ/ppm = 7.58–7.42 (m, 15H, Ph), 5.34 (s-br, 2H, C3-H/C4-H), 5.10 (s-br, 2H, C3-H/C4-H), 2.61-2.53 (m, 1H, C6-H), 1.95 (s, 3H, C1-H), 1.19 (d, ${}^{3}J_{HH} = 6.3$ Hz, 6H, C7-H).¹¹ ¹H NMR (CD₃OD): δ /ppm = 7.58–7.46 (m, 15H, Ph), 5.72 (d, ${}^{3}J_{HH} = 5.6$ Hz, 2H, C3-H/C4-H), 5.40 (d, ${}^{3}J_{HH} = 5.3$ Hz, 2H, C3-H/C4-H), 2.59 (hept, ${}^{3}J_{HH} = 6.5$ Hz, 1H, C6-H), 1.93 (s, 3H, C1-H), 1.22 (d, ${}^{3}J_{HH} = 6.7$ Hz, 6H, C7-H). ${}^{13}C{}^{1}H{}$ NMR (CD₃OD): $\delta/\text{ppm} = 167.1$ (C12), 135.4 (d, ${}^{2}J_{\text{CP}} = 10$ Hz, C9), 132.4 (d, ${}^{4}J_{\text{CP}} = 2.1$ Hz, C11), 130.7 (d, ${}^{1}J_{CP} = 46.1$ Hz, C8), 130.0 (d, ${}^{3}J_{CP} = 10.3$ Hz, C10), 108.9 (d, ${}^{2}J_{CP} = 2.9$ Hz, C5), 99.2 (C2), 89.2 (d, ${}^{2}J_{CP} = 4.0$ Hz, C3/C4), 88.0 (d, ${}^{2}J_{CP} = 2.9$ Hz, C3/C4), 32.2 (C6), 22.4 (C7), 18.0 (C1). ³¹P{¹H} NMR (CDCl₃): δ /ppm = 29.8. ³¹P{¹H} NMR (CD₃OD): δ /ppm = 31.9.

¹⁰ H. Yan, G. Süss-Fink, A. Neels and H. Stoeckli-Evans, J. Chem. Soc., Dalton Trans., 1997, 4345–4350.

¹¹ The compound is not stable if maintained in $CDCl_3$ for > 1 h (see later "Stability studies in chloroform solutions")

Figure 1S. IR spectrum of $[RuCl_2(\eta^6-p-cymene)\{\kappa P-Ph_2P(4-C_6H_4OSiMe_2^tBu)\}]$, **1**.

Figure 2S. IR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂P(4-C₆H₄Br)}], 2.

Figure 3S. IR spectrum of $[RuCl_2(\eta^6-p-cymene)\{\kappa P-Ph_2P(4-C_6H_4OCOCHCl_2)\}]$, 3.

Figure 4S. IR spectrum of [RuCl₂(η^6 -*p*-cymene)(κ *P*-Ph₂POPh)], **4**.

Figure 5S. IR spectrum of [RuCl₂(η^6 -*p*-cymene){ κ *P*-Ph₂PO(2-C₆H₄(SiMe₂^tBu))}], 5.

Figure 6S. IR spectrum of $[Ru(C_2O_4)(\eta^6-p\text{-cymene})\{\kappa P\text{-Ph}_2PO(2\text{-}C_6H_4(SiMe_2^tBu))\}]$, **6**.

Figure 9S. ¹H NMR spectrum of [RuCl₂(η⁶-*p*-cymene){κ*P*-Ph₂P(4-C₆H₄OSiMe₂/Bu)}], **1**, in CDCl₃.

Figure 10S. ¹³C{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂P(4-C₆H₄OSiMe₂^{*t*}Bu)}], **1**, in CDCl₃.

The signal for the Si-CH₃ group (-4.5 ppm) falls out of the range of this spectrum and was identified via HMBC.

Figure 11S. ²⁹Si{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂P(4-C₆H₄OSiMe₂^{*t*}Bu)}], **1**, in CDCl₃.

Figure 12S. ³¹P{¹H} NMR spectrum of [RuCl₂(η^6 -p-cymene){ κ P-Ph₂P(4-C₆H₄OSiMe₂/Bu)}], 1, in CDCl₃.

Figure 13S. ¹H NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂P(4-C₆H₄Br)}], **2**, in CDCl₃.

Figure 14S. ¹³C{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂P(4-C₆H₄Br)}], **2**, in CDCl₃.

24.01 ppm -80 -40

Figure 15S. ³¹P{¹H} NMR spectrum of [RuCl₂(η^6 -p-cymene){ κP -Ph₂P(4-C₆H₄Br)}], **2**, in CDCl₃.

Figure 16S. ¹H NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂P(4-C₆H₄OCOCHCl₂)}], **3**, in CDCl₃.

7.16 CDCl3 Diethyl ether Diethyl ether 111 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Figure 17S. ¹³C{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂P(4-C₆H₄OCOCHCl₂)}], **3**, in CDCl₃.

Figure 18S. ³¹P{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂P(4-C₆H₄OCOCHCl₂)}], **3**, in CDCl₃.

CDCl3 7.26 (6.0[‡] 1.0[‡] 4.0 6.21 4.0 1.01 3.2 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 ppm 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

Figure 19S. ¹H NMR spectrum of [RuCl₂(η⁶-*p*-cymene)(κ*P*-Ph₂POPh)], **4**, in CDCl₃.

Figure 20S. ¹³C{¹H} NMR spectrum of [RuCl₂(η⁶-*p*-cymene)(κ*P*-Ph₂POPh)], **4**, in CDCl₃.

Figure 21S. ³¹P{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene)(κP -Ph₂POPh)], 4, in CDCl₃.

Figure 22S. ¹H NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂PO(2-C₆H₄(SiMe₂^{*t*}Bu))}], **5**, in CDCl₃.

(BCB) hexane hexane hexane ويتعدين أباله والالتان ألابان العمار الميلة 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 ppm

Figure 23S. ¹³C{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂PO(2-C₆H₄(SiMe₂^{*t*}Bu))}], **5**, in CDCl₃.

Figure 24S. ²⁹Si{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂PO(2-C₆H₄(SiMe₂^{*t*}Bu))}], **5**, in CDCl₃.

Figure 25S. ³¹P{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene){ κP -Ph₂PO(2-C₆H₄(SiMe₂^{*t*}Bu))}], 5, in CDCl₃.

Figure 26S. ¹H NMR spectrum of [Ru(C₂O₄)(η^6 -*p*-cymene){ κ *P*-Ph₂PO(2-C₆H₄(SiMe₂^{*t*}Bu))}], **6**, in CDCl₃.

Figure 27S. ¹³C{¹H} NMR spectrum of [Ru(C₂O₄)(η^6 -*p*-cymene){ κP -Ph₂PO(2-C₆H₄(SiMe₂^tBu))}], **6**, in CDCl₃.

Figure 28S. ²⁹Si{¹H} NMR spectrum of [Ru(C₂O₄)(η^6 -*p*-cymene){ κP -Ph₂PO(2-C₆H₄(SiMe₂^tBu))}], **6**, in CDCl₃.

Figure 29S. ³¹P{¹H} NMR spectrum of [Ru(C₂O₄)(η⁶-*p*-cymene){κ*P*-Ph₂PO(2-C₆H₄(SiMe₂'Bu))}], **6**, in CDCl₃.

Figure 30S. ¹H NMR spectrum of [RuCl₂(η^6 -*p*-cymene)(κP -PPh₃)], **Ru-PPh₃**, in CDCl₃.

Figure 31S. ¹³C{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene)(κP -PPh₃)], **Ru-PPh₃**, in CDCl₃.

Figure 32S. ³¹P{¹H} NMR spectrum of [RuCl₂(η^6 -*p*-cymene)(κP -PPh₃)], **Ru-PPh₃**, in CDCl₃.

Figure 33S. ¹H NMR spectrum of [Ru(C₂O₄)(η^6 -*p*-cymene)(κ *P*-PPh₃)], **Ru-PPh₃-O** in CD₃OD.

Figure 34S. ¹³C{¹H} NMR spectrum of [Ru(C₂O₄)(η^6 -*p*-cymene)(κP -PPh₃)], **Ru-PPh₃-O** in CD₃OD.

Figure 35S. ³¹P{¹H} NMR spectrum of [Ru(C₂O₄)(η^6 -*p*-cymene)(κ *P*-PPh₃)], Ru-PPh₃-O in CD₃OD.

Stability studies in DMSO/water solutions.

Reference data (NMR). NMR spectra of the following compounds were recorded in DMSO-d₆/D₂O 9:1 v/v and used as reference for NMR assignments.

p-cymene. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.12–7.03 (m, 4H), 2.80 (hept, ³*J*_{HH} = 6.9 Hz, 1H), 2.23 (s, 3H), 1.15 (d, ³*J*_{HH} = 6.9 Hz, 6H). ¹³C{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 144.6, 133.6, 128.1, 125.3, 32.2, 23.1, 19.7.

Ph₂P(4-C₆H₄OSiMe₂'Bu). Immediate decomposition upon dissolution. ³¹P{¹H} NMR (DMSOd₆:D₂O 9:1): δ/ppm = 36.2, 34.8, 30.8, 27.2, -7.0, -8.5, -24.3, -25.7.

^{*t*}**BuMe**₂**SiOH**.¹² ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 0.82 (s, 9H), -0.06 (s, 6H). ²⁹Si{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 14.6.

Ph₂P(4-C₆H₄Br). ¹H NMR (DMSO-d₆:D₂O 9:1): δ/ppm = 7.58 (d, ³J_{HH} = 7.8 Hz, 2H), 7.43–7.38 (m, 6H), 7.25–7.19 (m, 4H), 7.15 (t, ³J_{HH} = ³J_{HP} = 7.6 Hz, 2H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = -8.0.

O=Ph₂P(4-C₆H₄Br).^{13 1}H NMR (DMSO-d₆:D₂O 9:1): δ/ppm = 7.76 (dd, J = 8.2, 1.3 Hz, 2H), 7.70– 7.50 (m, 12H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ/ppm = 27.0.

Cl₂CHCO₂H. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 6.61 (s, 1H), 4.23 (s, 1H).

Ph₂POPh. ¹H NMR (DMSO-d₆:D₂O 9:1): δ/ppm = 7.60–7.55 (m, 4H), 7.48–7.41 (m, 6H), 7.31 (t, ${}^{3}J_{HH} = {}^{3}J_{HP} = 7.9$ Hz, 2H), 7.11 (d, ${}^{3}J_{HH} = 8.1$ Hz, 2H), 7.04 (t, ${}^{3}J_{HH} = 7.3$ Hz, 1H). ${}^{31}P\{{}^{1}H\}$ NMR (DMSO-d₆:D₂O 9:1): δ/ppm = 109.0. Decomposition into phenol and several P-containing species within 24 hours. ¹H NMR (DMSO-d₆:D₂O 9:1): δ/ppm = 9.53 (s, PhOH), 8.69 (s), 7.72 (dd, *J* = 13.5, 7.5 Hz), 7.65–7.53 (m), 7.16 (t, *J* = 7.8 Hz, 2H, PhOH), 6.76 (dd, *J* = 11.0, 7.9 Hz, 3H, PhOH). ${}^{31}P\{{}^{1}H\}$ NMR (DMSO-d₆:D₂O 9:1): δ/ppm = 29.9, 23.7, 20.4, 20.3, 19.8, 19.3, -24.3, -25.7.

¹² The compound was prepared according to the literature: P. Patschinski, C. Zhang and H. Zipse, *J. Org. Chem.*, 2014, **79**, 8348-8357.

¹³ The same compound was formed upon air exposure of the phosphine in DMSO/D2O solution at ambient temperature for several days.

Ph₂P(O(2-C₆H₄SiMe₂'Bu)). Immediate decomposition upon dissolution. ³¹P{¹H} NMR (DMSOd₆:D₂O 9:1): δ/ppm = 106.8, 36.2, 34.8, 29.9, 29.4, 28.5, 24.2, 22.6, 20.4, 19.8, 19.3, -18.1, -24.3, -25.7.

2-C₆H₄(OH)(SiMe₂'Bu). ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 9.40 (s, 1H), 7.22 (d, ³J_{HH} = 6.8 Hz, 1H), 7.16 (t, ³J_{HH} = 7.3 Hz, 1H), 6.79–6.66 (m, 2H), 0.84 (s, 9H), 0.22 (s, 6H). ²⁹Si{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.52.

 $[Bu_4N]_2[C_2O_4]^{.14} \ ^{13}C{^{1}H} NMR (DMSO-d_6): \delta/ppm = 174.1.$

PPh₃. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.40–7.35 (m, 9H), 7.25–7.18 (m, 6H). ³¹P{¹H} NMR

 $(DMSO-d_6:D_2O 9:1): \delta/ppm = -7.0.$

O=PPh₃.¹³ ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.65–7.51 (m, 15H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 27.4.

Reference data (conductivity). **NaCl**. $\Lambda_{\rm m}$ (DMSO:H₂O 9:1, c = 1.0·10⁻³ M) = 48 S·cm²·mol⁻¹. **NaNO₃**. $\Lambda_{\rm m}$ (DMSO:H₂O 9:1, c = 1.0·10⁻³ M) = 49 S·cm²·mol⁻¹.

¹⁴ M. Más-Montoya, D. Curiel, C. Ramírez de Arellano, A. Tárraga and P. Molina, *Eur. J. Org. Chem.*, 2016, 22, 3878-3883.

Stability studies in DMSO/water: compound 1. Red-orange solution (Scheme 1S, Table 2S).

1. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.73–7.66 (m, 4H), 7.60 (t, *J* = 9.2 Hz, 2H), 7.44–7.33 (m, 6H), 6.85 (d, *J* = 7.9 Hz, 2H), 5.27 (d, *J* = 6.0 Hz, 2H), 5.20 (d, *J* = 5.7 Hz, 2H), 1.74 (s, 3H), 1.00–0.85 (m, 15H), 0.18 (s, 6H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 23.2. **P1**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.23–7.12 (m), 6.81 (d, *J* = 7.7 Hz, 2H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = -8.5. **P1=O**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.82–7.75 (m), 6.72 (d, *J* = 8.3 Hz, 2H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 36.5 (7.5-72 h), 27.2 (72 h), 27.5 (72 h), 23.1 (23.5-72 h).

Scheme 1S and Table 2S. Molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of 1 at 37°C.

Stability studies in DMSO/water: *compound* 2. Red-orange solution (Scheme 2S, Table 3S). 2. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.74–7.67 (m, 4H), 7.65 (t, *J* = 9.0 Hz, 2H), 7.54 (d, *J* = 7.6 Hz, 2H), 7.50–7.40 (m, 6H), 5.30 (d, *J* = 6.0 Hz, 2H), 5.23 (d, *J* = 5.8 Hz, 2H), 1.74 (s, 3H), 0.93 (d, *J* = 6.9 Hz, 6H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 24.5. Minor P-containing species. ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 42.7 (72 h), 38.3 (23.5–72 h).

Scheme 2S and Table 3S. Molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of 2 at 37°C.

time / hours		0	7.5	23.5	48	72
/	\ _m / S [·] cm ² ·mol ^{−1}	23	25	26	26	31
	2 vs. internal standard	97	83	67	45	27
	2	90	82	57	32	17
% NMR	S1	4	3	2	0	0
% NIVIR	P2	6	6	9	22	29
	O=P2	0	0	12	13	13
	<i>p</i> -cymene	0	9	20	33	41

Stability studies in DMSO/water: *compound* 3. Red-orange solution (Scheme 3S, Table 4S).

3. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.72–7.65 (m, 4H), 7.54 (t, *J* = 8.8 Hz, 2H), 7.46–7.32 (m, 6H), 6.77 (d, *J* = 7.6 Hz, 2H), 6.37 (s, 1H), 5.26 (d, *J* = 5.3 Hz, 2H), 5.17 (d, *J* = 4.7 Hz, 2H), 1.73 (s, 3H), 0.94 (d, *J* = 6.5 Hz, 6H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 23.1. **O=P3**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.85–7.76 (m), 6.91 (d, *J* = 7.1 Hz, 2H), {6.37 (s)}. ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 27.5. **Minor P-containing species**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 36.6 (23.5-72 h), 40.1 (48-72 h).

Scheme 3S and Table 4S. Molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of 3 at 37°C.

time / hours		0	7.5	23.5	48	72
Λ _m / S [·] cm ^{2·} mol ⁻¹		20	24	31	36	44
	3 vs. internal standard	95	89	56	37	15
	3	83	74	54	30	12
% NMR	S1	7	5	2	0	0
	O=P3	10	14	16	17	20
	<i>p</i> -cymene	0	8	28	53	67

Stability studies in DMSO/water: *compound 4.* At variance to the general procedure, a saturated solution in DMSO-d₆/D₂O 9:1 *v/v* (orange solution + orange precipitate) was used for the NMR experiment; the solubility of **4** in this solvent being < $1.5 \cdot 10^{-2}$ mol·L⁻¹. A $1.5 \cdot 10^{-3}$ mol·L⁻¹ solution of **4** in DMSO/H₂O 9:1 *v/v* was used for conductivity measurements. Data are compiled in Table 5S while NMR detected species are shown in Scheme 4S. **4**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.90 (t, *J* = 8.4 Hz, 4H), 7.43–7.33 (m, 6H), 7.30–7.21 (m, 4H), 7.07 (t, *J* = 6.1 Hz, 1H), 5.42 (s-br, 4H), 2.29–2.20 (hept, *J* = 6.7 Hz, 1H), 1.30 (s, 3H), 0.70 (d, *J* = 6.5 Hz, 6H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 8.37–8.29 (m), 8.20–8.14 (m), 7.72 (dd, *J* = 12.4, 7.4 Hz), 7.65–7.44 (m), 7.02–6.92 (m), 6.84–6.81 (m). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 165.0 (48-72 h), 142.3 (23.5-72 h), 142.2 (23.5-72 h), 29.9 (48-72 h), 24.3 (48-72 h).

Scheme 4S and Table 5S. Molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of 4 at 37°C.

S1

time / hours		0	7.5	23.5	48	72
Λ _m / S·cm ² ·mol ⁻¹		20	24	31	36	44
	4 vs. internal standard	94	78	25	14	12
	4	95	68	32	14	11
% NMR	S1	0	3	9	10	11
	PhOH	5	16	29	35	35
	<i>p</i> -cymene	0	13	30	41	43

Stability studies in DMSO/water: *compound 5.* At variance to the general procedure, a saturated solution in DMSO-d₆/D₂O 9:1 *v/v* (orange solution + orange precipitate) was used for the NMR experiment, the solubility of **5** in this solvent being $< 1.5 \cdot 10^{-2}$ mol·L⁻¹. A $1.5 \cdot 10^{-3}$ mol·L⁻¹ solution of **5** in DMSO/H₂O 9:1 *v/v* was used for conductivity measurements. Data are compiled in Table 6S while NMR detected species are shown in Scheme 5S. **5**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.82–7.73 (m, 4H), 7.56–7.31 (m, 8H), 7.16–7.07 (m, 2H), 5.54 (d, *J* = 5.1 Hz, 2H), 5.41 (d, *J* = 4.4 Hz, 2H), 2.38–2.29 (m, 1H), 1.60 (s, 3H), 1.01 (s, 9H), 0.86 (d, *J* = 6.2 Hz, 6H), 0.33 (s, 6H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 122.1. **Other P-containing products**. ¹H NMR (DMSO-d₆:D, 0.12 (s). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 169.6 (72 h), 111.2 (72h), 29.2 (7–72h), 24.3 (22–72 h), 19.7 (22–72 h), 19.2 (22–72 h).

Scheme 5S and Table 6S. Molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of 5 at 37°C.

time / hours		0	7	22	48	72
Λ _m / S [·] cm ² ·mol ⁻¹		3	14	17	22	24
5 vs. internal stand		96	48	33	6	4
	5	91	47	18	3	1
% NMR	S1	9	24	33	33	28
	2-C ₆ H ₄ (OH)(SiMe ₂ ^t Bu)	0	19	32	41	42
	<i>p</i> -cymene	0	10	17	23	29

Stability studies in DMSO/water: compound 6. Yellow solution (Scheme 6S and Table 7S).

6. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.60 (d, *J* = 7.0 Hz, 1H), 7.50–7.45 (m, 3H), 7.44–7.35 (m, 8H), 7.28 (t, *J* = 7.2 Hz, 1H), 7.15 (d, *J* = 8.3 Hz, 1H), 5.53 (d, *J* = 5.9 Hz, 2H), 5.29 (d, *J* = 5.9 Hz, 2H), 2.29 (hept, *J* = 6.8 Hz, 1H), 1.73 (s, 3H), 1.11 (d, *J* = 6.8 Hz, 6H), 0.96 (s, 9H), 0.30 (s, 6H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 127.9. **6a**. ¹H NMR (DMSO-d₆:D₂O 9:1) δ 7.82–7.76 (m, 4H), 5.57 (d, *J* = 3.3 Hz, 2H), 5.39 (d, *J* = 6.1 Hz, 2H), 1.59 (s, 3H), 1.00 (s, 9H), 0.86 (d, 6H), 0.31 (s, 9H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 122.1 (7.5h-72 h). **Other products**. ¹H NMR (DMSO-d₆:D₂O 9:1) δ 8.31 (m), 6.97, 6.13 (d), 3.15 (s), 2.10 (s), 1.96 (s), 1.91 (s), 1.79 (s), 0.77 (s), 0.72 (s), 0.68 (m), 0.48 (s), 0.27 (m), 0.11 (s). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 174.1 (48–72 h), 106.9 (7.5–23 h), 29.4 (7–72 h), 20.4 (48–72 h), 20.2 (48–72 h), 19.8 (48–72 h), 19.3 (48–72 h).

Scheme 6S and Table 7S. Molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of 6 at 37°C.

Stability studies in DMSO/water: [$Ru(C_2O_4)(\eta^6-p-cymene)(H_2O)$]. Yellow solution (Scheme 7S). [$Ru(C_2O_4)(\eta^6-p-cymene)(Me_2SO)$], S2. ¹H NMR (DMSO-d_6:D_2O 9:1): $\delta/ppm = 5.96$ (s-br, 2H), 5.86 (s-br, 2H), 2.83–2.68 (m, 1H), 2.13 (s, 3H), 1.24 (d, J = 6.0 Hz, 6H). ¹³C{¹H} NMR (DMSO-d_6:D_2O 9:1): $\delta/ppm = 164.9$, 105.7, 100.2, 86.8, 86.1, 30.8, 22.4, 17.6. [$Ru(C_2O_4)(\eta^6-p-cymene)(H_2O)$]. ¹H NMR (DMSO-d_6:D_2O 9:1): $\delta/ppm = 5.72$ (s-br, 2H), 5.48 (s-br, 2H), {2.83–2.68 (m)}, {2.13 (s)}, {1.24 (d)}. ¹³C{¹H} NMR (DMSO-d_6:D_2O 9:1): $\delta/ppm = 165.7$, 98.1, 96.0, 80.4, 77.5, 31.0, 22.5, {17.6}. [$Ru(C_2O_4)(\eta^6-p-cymene)(H_2O)$]/S2 ratio = ca. 0.61. ¹H spectrum after 24 hours at 37°C showed partial release of *p*-cymene (*ca.* 13%) but no variation in the compounds ratio, suggesting that equilibrium had been reached.

Scheme 7S. NMR detected species for DMSO/water 9:1 v/v solution of [Ru(C₂O₄)(n⁶-p-cymene)(H₂O)].

Stability studies in DMSO/water: [$RuCl_2(\eta^6$ -p-cymene)(κP - PPh_3)] (Ru- PPh_3). Orange solution (Scheme 8S and Table 8S). Ru-PPh₃. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.77–7.66 (m, 6H), 7.46–7.35 (m, 9H), 5.27 (d, J = 5.9 Hz, 2H), 5.21 (d, J = 5.6 Hz, 2H), 1.74 (s, 3H), 0.93 (d, J = 6.8Hz, 6H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 24.2. Minor P-containing species. ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 38.1 (72 h).

³⁵Cl NMR (DMSO-d₆:D₂O 9:1, 72 h): δ /ppm = no signal was observed after 1 hour acquisition time.

Scheme 8S and Table 8S. Molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of Ru-PPh₃ at 37°C.

S1

Ru-PPh₃

time / hours		0	7.5	23.5	48	72
Λ _m / S·cm ² ·mol ⁻¹		28	27	31	33	34
	Ru-PPh ₃ vs. internal standard	98	90	77	56	30
	Ru-PPh₃	91	76	54	34	17
	S1	4	3	1	0	0
% NWK	PPh₃	4	7	16	28	34
	O=PPh₃	1	1	4	4	6
	<i>p</i> -cymene	0	13	25	34	43

Stability studies in DMSO/water: $[Ru(C_2O_4)(\eta^6 - p - cymene)(\kappa P - PPh_3)]$ (*Ru-PPh₃-O*). Yellowgreen solution (Scheme 9S and Table 9S). **Ru-PPh₃-O**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.56–7.50 (m, 3H), 7.50–7.45 (m, 6H), 7.41–7.36 (m, 6H), 5.67 (d, *J* = 5.9 Hz, 2H), 5.33 (d, *J* = 5.9 Hz, 2H), 2.50–2.43 (m, 1H), 1.77 (s, 3H), 1.10 (d, *J* = 6.8 Hz, 6H). ¹³C{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 163.3, 133.0 (d, *J* = 10.2 Hz), 130.2 (s), 128.7 (d, *J* = 44.7 Hz), 128.0 (d, *J* = 10.0 Hz), 106.7 (d, *J* = 3.4 Hz), 96.7, 86.9 (d, *J* = 3.7 Hz), 85.5 (d, *J* = 1.7 Hz), 29.5, 20.9, 16.4. ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 32.4. **Ru-PPh₃-X**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.74–7.69 (m, 6H), 5.27 (d, *J* = 6.3 Hz, 2H), 5.21 (d, *J* = 5.7 Hz, 2H), 1.74 (s, 3H), 0.93 (d, *J* = 6.8 Hz, 6H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.75–7.57 (m), 7.27–7.22 (m). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 45.3, 40.4, 40.1, 27.4 (**O=PPh_3**).

Scheme 9S and Table 9S. Molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of Ru-PPh₃-O at 37°C.

time / hours		0	7.5	23	48	72
Λ_m / S [·] cm ^{2·} mol ⁻¹		24	24	21	23	24
	Ru-PPh ₃ -O vs. internal standard	99	84	77	74	64
	Ru-PPh₃-O	99	91	86	79	72
% NMR	Ru-PPh₃-X	0	3	4	4	4
	O=PPh₃ + other P species	1	4	5	5	5
	<i>p</i> -cymene	0	2	5	12	19

Ru-PPh₃-X

Ru-PPh₃-O

Stability studies in DMSO/water: [$RuCl_2(\eta^6$ -p-cymene)]₂. Orange solution (Scheme 10S and Table 10S). S1. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 5.79 (d, ³J_{HH} = 6.3 Hz, 2H), 5.74 (d, ³J_{HH} = 6.3 Hz, 2H), 2.79 (hept, ³J_{HH} = 6.9 Hz, 1H), 2.07 (s, 3H), 1.17 (d, ³J_{HH} = 6.9 Hz, 6H). ¹³C{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 107.2, 100.7, 86.8, 85.9, 30.5, 21.9, 18.3. ³⁵Cl NMR (DMSO-d₆:D₂O 9:1): δ /ppm = no signal.

¹H NMR spectra in DMSO-d₆ and DMSO-d₆/D₂O 9:1 v/v + NaCl (0.11 mol·L⁻¹) showed a single set of signals identical to that in DMSO-d₆/D₂O 9:1 v/v (vide infra), due to the formation of [(η^6 -pcymene)RuCl₂(κ S-Me₂SO)] (S1).¹⁵

Scheme 10S and Table 10S. Molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of [RuCl₂(η^6 -p-cymene)]₂ at 37°C.

S	1	

time	/ hours	0 - 7.5	24 - 48	72
Λ _m / S [.]	cm ² ·mol ⁻¹	7.0		
	S1	100	98	96
	<i>p</i> -cymene	0	2	4

¹⁵ M. Patra, T. Joshi, V. Pierroz, K. Ingram, M. Kaiser, S. Ferrari, B. Spingler, J. Keiser and G. Gasser, *Chem. Eur. J.*, 2013, **19**, 14768–14772.

Stability studies in DMSO/water: [$RuCl_2(\eta^6-p-cymene)(PTA)$] (RAPTA-C). Orange solution (Scheme 11S and Table 11S). RAPTA-C. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 5.72 (d, ³J_{HH} = 5.7 Hz, 2H), 5.69 (d, ³J_{HH} = 5.7 Hz, 2H), 4.41 (s, 6H), 4.14 (s, 6H), 1.86 (s, 3H), 1.09 (d, ³J_{HH} = 6.8 Hz, 6H). ³¹P{¹H} NMR: δ /ppm = -34.1. Other Ru-pta species. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 4.37 (s, 6H), 4.16 (s, 6H). ³¹P{¹H} NMR: δ /ppm = -19.9.

Scheme 11S and **Table 11S**. Molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of [RuCl₂(η^6 -p-cymene)(PTA)] at 37°C.

RAPTA-C

time / hours		0	16.5	40.5	72
Λ _m / S [·] cm ^{2·} mol ⁻¹		24			
% NMR	RAPTA-C vs. internal standard	100	90	63	52
	RAPTA-C	100	57	38	28
	<i>p</i> -cymene	0	24	31	37
	Other Ru-pta	0	19	31	35

Stability studies in chloroform solutions.

General procedure. Ruthenium compounds (ca. 0.3 mmol) were dissolved in CDCl₃ and the resulting solutions were stored at ambient temperature and analysed by ${}^{1}H/{}^{31}P$ NMR spectroscopy.

[RuCl₂(η^6 -*p*-cymene){ κ *P*-Ph₂P(4-C₆H₄OSiMe₂'Bu)}], 5. Orange solution. After 14 days, ¹H NMR spectrum indicated extensive degradation with release of *p*-cymene.

[**Ru**(**C**₂**O**₄)(η^6 -*p*-cymene){ κP -Ph₂P(O(2-C₆H₄SiMe₂^{*t*}Bu))}], 6. Yellow solution. After 12 days, ¹H NMR spectrum indicated extensive degradation with release of *p*-cymene. ³¹P{¹H} NMR (CDCl₃): δ /ppm = 120.3, 30.0.

[**RuCl₂(\eta^6-***p***-cymene)(\kappa P-PPh₃)], Ru-PPh₃.** Orange red-solution developing a brown-green colour within weeks followed by the precipitation of a dark solid. ¹H and ³¹P NMR spectra of the solution indicated a partial degradation of the starting material with release of *p*-cymene. After 2 months, volatiles were removed under vacuum affording a dark brown solid. Brown crystals were obtained from a MeOH/acetone (1:1 ν/ν) solution of the solid layered with Et₂O and settled aside at -20°C. The Ru(II)/Ru(III) mixed valence compound [(η^6 -*p*-cymene)Ru(μ -Cl)₃RuCl₂(PPh₃)] (7)¹⁶ was identified by X-Ray analysis.

[**Ru**(**C**₂**O**₄)(η^{6} -*p*-cymene)(κP -PPh₃)], **Ru**-PPh₃-O. Yellow solution turning into an orange solution with precipitate within hours. ¹H NMR spectrum indicated almost complete conversion to another species containing the {Ru(*p*-cymene)(PPh₃)} fragment. ¹H NMR (CDCl₃): δ /ppm = 7.86–7.80 (m, 6H), 7.41–7.33 (m, 9H), 5.19 (d, *J* = 6.0 Hz, 2H), 4.99 (d, *J* = 5.6 Hz, 2H), 2.85 (hept, *J* = 6.8 Hz, 1H), 1.87 (s, 3H), 1.10 (d, *J* = 6.9 Hz, 6H). ³¹P{¹H} NMR (CDCl₃): δ /ppm = 24.2.

¹⁶ J. Wolf, K. Thommes, O. Briel, R. Scopelliti and K. Severin, Organometallics, 2008, 27, 4464-4474.

Ru(1)-(η ⁶ -p-cymene) _{av}	2.21(3)	Ru(1)-P(1)	2.347(3)
Ru(1)-Cl(1)	2.401(3)	Ru(1)−Cl(2)	2.406(4)
P(1)-C(11)	1.832(13)	P(1)-C(17)	1.833(13)
P(1)-C(23)	1.830(13)	C(26)-O(1)	1.376(18)
C(29)-O(1)	1.28(2)	C(29)-O(2)	1.22(2)
C(29)-C(30)	1.54(3)	C(30)-Cl(3)	1.78(2)
C(30)-Cl(4)	1.72(2)		
Cl(1)-Ru(1)-Cl(2)	87.29(13)	CI(1)-Ru(1)-P(1)	89.03(11)
Cl(2)-Ru(1)-P(1)	85.82(12)	C(26)-O(1)-C(29)	120.9(14)
O(1)-C(29)-O(2)	125.7(19)	O(1)-C(29)-C(30)	112.6(16)
O(2)-C(29)-C(30)	121.7(18)		

Table 12S. Selected bond distances (Å) and angles (°) for 3.

Table 13S. Selected bond distances (Å) and angles (°) for 4.

Ru(1)−(η ⁶ -p-cymene) _{av}	2.22(2)	Ru(1)-P(1)	2.316(2)
Ru(1)-Cl(1)	2.406(3)	Ru(1)-Cl(2)	2.417(2)
P(1)-C(17)	1.812(9)	P(1)-C(23)	1.837(9)
P(1)-O(1)	1.627(6)	O(1)-C(11)	1.399(10)
CI(1)-Ru(1)-CI(2)	88.51(9)	CI(1)-Ru(1)-P(1)	92.54(8)
CI(2)-Ru(1)-P(1)	85.83(8)	P(1)-O(1)-C(11)	125.7(6)

Ru(1)-(η ⁶ -p-cymene) _{av}	2.224(10)	Ru(1)-P(1)	2.3154(9)
Ru(1)-Cl(1)	2.4040(9)	Ru(1)-Cl(2)	2.4206(10)
P(1)-C(23)	1.824(4)	P(1)-C(29)	1.831(4)
P(1)-O(1)	1.650(2)	O(1)-C(11)	1.399(4)
C(12)-Si(1)	1.889(4)	C(17)-Si(1)	1.853(4)
C(18)-Si(1)	1.872(4)	C(19)-Si(1)	1.894(4)
CI(1)-Ru(1)-CI(2)	86.02(4)	Cl(1)-Ru(1)-P(1)	91.60(3)
CI(2)-Ru(1)-P(1)	89.23(3)	P(1)-O(1)-C(11)	124.2(2)
C(12)-Si(1)-C(19)	108.28(18)	C(17)-Si(1)-C(18)	108.7(2)

Table 14S. Selected bond distances (Å) and angles (°) for 5.

Table 15S. Selected bond distances (Å) and angles (°) for 6.

Ru(1)-(η ⁶ -p-cymene) _{av}	2.223(10)	Ru(1)-P(1)	2.3190(11)
Ru(1)-O(1)	2.079(3)	Ru(1)-O(2)	2.069(3)
C(21)-O(1)	1.289(5)	C(22)-O(2)	1.295(5)
C(21)-O(3)	1.221(5)	C(22)-O(4)	1.214(5)
C(21)-C(22)	1.547(6)	P(1)-O(5)	1.641(2)
P(1)-C(31)	1.827(4)	P(1)-C(37)	1.813(4)
O(5)-C(43)	1.400(4)	C(44)-Si(1)	1.894(4)
C(49)-Si(1)	1.862(4)	C(50)-Si(1)	1.874(4)
C(51)-Si(1)	1.895(4)		
O(1)-Ru(1)-O(2)	78.40(11)	O(1)-Ru(1)-P(1)	90.06(9)
O(2)-Ru(1)-P(1)	89.43(8)	P(1)-O(5)-C(43)	124.2(2)
Ru(1)-O(1)-C(21)	114.7(3)	Ru(1)-O(2)-C(22)	114.0(2)
O(1)-C(21)-C(22)	114.0(3)	O(2)-C(22)-C(21)	115.1(3)
O(1)-C(21)-O(3)	124.9(4)	O(2)-C(22)-O(4)	125.2(4)
O(3)-C(21)-C(22)	120.9(4)	O(4)-C(22)-C(21)	119.6(4)
C(44)-Si(1)-C(51)	110.68(17)	C(49)-Si(1)-C(50)	108.1(2)

	3-CH ₃ COCH ₃	4	5	6-C ₆ H ₁₄
Formula	C33H35Cl4O3PRu	C ₂₈ H ₂₉ Cl ₂ OPRu	C ₃₄ H ₄₃ Cl ₂ OPRuSi	C ₄₂ H ₅₇ O ₅ PRuSi
Fw	753.45	584.45	698.71	802.00
<i>T</i> , K	100(2)	100(2)	100(2)	100(2)
λ, Å	0.71073	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Triclinic
Space Group	Pbca	Pbca	<i>P</i> 2 ₁ / <i>c</i>	PĪ
<i>a</i> , Å	18.174(3)	14.3504(8)	17.1191(8)	9.3525(8)
<i>b,</i> Å	13.861(2)	16.8861(9)	10.5238(5)	13.2672(12)
<i>c</i> , Å	25.670(4)	42.303(2)	18.4530(9)	16.7694(15)
α°	90	90	90	97.189(3)
<i>β</i> , °	90	90	100.9940(10)	93.247(3)
γ, °	90	90	90	101.528(3)
Cell Volume, Å ³	6466.7(18)	10250.9(10)	3263.4(3)	2015.6(3)
Ζ	8	16	4	2
D_c , g cm ⁻³	1.548	1.515	1.422	1.321
μ , mm ⁻¹	0.898	0.902	0.756	0.500
F(000)	3072	4768	1448	844
Crystal size, mm	0.19×0.16×0.08	0.16×0.14×0.10	0.18×0.16×0.12	0.16×0.13×0.10
heta limits, °	1.587–25.099	1.715–25.049	2.238-25.999	1.228–25.048
	-21 \leq h \leq 21	-17 \leq h \leq 17	-21 ≤ h ≤21	-11 ≤ h ≤11
Index ranges	$-16 \le k \le 16$	$\textbf{-20} \leq k \leq 20$	$-12 \le k \le 12$	$-15 \le k \le 15$
	$-30 \le I \le 30$	$-50 \le I \le 50$	$-22 \le l \le 22$	-19 ≤ l ≤ 19
Reflections collected	59384	119882	41769	23451
Independent reflections	5732 [<i>R</i> _{int} = 0.1620]	9074 [<i>R</i> _{int} = 0.2221]	6410 [<i>R</i> _{int} = 0.0612]	7122 [<i>R</i> _{int} = 0.0301]
Completeness to θ max	99.5%	100.0%	100.0%	99.8%
Data / restraints / parameters	5732 / 219 / 382	9074 / 168 / 601	6410 / 0 / 369	7122 / 44 / 429
Goodness on fit on F ²	1.223	1.172	1.114	1.052
$R_1 (l > 2\sigma(l))$	0.1402	0.0956	0.0473	0.0527
wR2 (all data)	0.2888	0.1788	0.0984	0.1345
Largest diff. peak and hole, e Å ⁻³	1.443 / –2.542	1.529 / –1.593	0.841 /0.939	2.405 / -1.092

Table 16S. Crystal data and collection details for 3-CH₃COCH₃, 4, 5 and 6-C₆H₁₄.