# Amino Acid Based Gallium-68 Chelators Capable of Radiolabeling at Neutral pH

Thomas W. Price,<sup>a,b</sup> Juan Gallo,<sup>c</sup> Vojtěch Kubíček,<sup>d</sup> Zuzana Böhmová,<sup>d</sup> Timothy J. Prior,<sup>e</sup> John Greenman,<sup>a</sup> Petr Hermann,<sup>d</sup> and Graeme J. Stasiuk<sup>ab\*</sup>

- <sup>a</sup> School of Life Sciences, Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull, UK, HU6 7RX
- <sup>b</sup> Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, UK, HU6 7RX
- Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian
   Nanotechnology Laboratory, Av. Mestre José Veiga s/n 4715-330 Braga, Portugal
- <sup>d</sup> Faculty of Science, Charles University, Hlavova 2030, 12840, Prague 2, Czech Republic
- <sup>e</sup> Chemistry, School of Mathematical and Physical Sciences, University of Hull, Cottingham Road, Hull, UK, HU6 7RX
- \* E-mail: g.stasiuk@hull.ac.uk

| 1.1 | Ligands                       | 3      |
|-----|-------------------------------|--------|
| 1.2 | Complexes                     | 5      |
| 1.3 | Radio-HPLC                    | 12     |
| 1.4 | Radio-TLC                     | 13     |
| 1.5 | Specific Activity             | 14     |
| 1.6 | Radiolabelling of standard ch | elates |
|     | 16                            |        |

| 1.7    | Stability to transferrin                  | 17 |
|--------|-------------------------------------------|----|
| 2. NM  | R Data                                    | 21 |
| 3. Cry | stal Data                                 | 24 |
| 3.1    | H <sub>4</sub> Dpaa.ga crystals structure | 24 |
| 3.2    | GaDpaa crystal structure                  | 26 |
| 3.3    | GaDpaa.ga crystal structure               | 28 |
|        |                                           |    |





## 1.1 Ligands

**Table S 1**: Overall protonation constants ( $\beta_{hlm}$ ) for ligands (T = 25 °C, I = 0.1 M (NMe<sub>4</sub>)Cl)

 $H_3$ Dpaa  $H_3$ Dpaa.dab  $H_4$ Dpaa.ga

| HL     | 7.38(2)  | 11.35(1) | 7.17(1)  |
|--------|----------|----------|----------|
| $H_2L$ | 11.11(2) | 16.74(2) | 11.84(2) |
| $H_3L$ | 13.93(2) | 20.51(3) | 15.76(2) |
| $H_4L$ | -        | 23.20(3) | 18.51(2) |



**Figure S 2**: Speciation diagrams of ligands A) H<sub>3</sub>Dpaa B) H<sub>3</sub>Dpaa.dab C) H<sub>4</sub>Dpaa.ga. ( $T = 25 \text{ }^{\circ}\text{C}$ , I = 0.1 M (NMe<sub>4</sub>)Cl, [L] = 0.004 M).

#### 1.2 Complexes

| Equilibrium<br>(Charges are<br>omitted)                                                              | H₃Dpaa                   |                       |                       | H₃Dpaa.dab             |                          |                         | H₄Dpaa.ga              |                         |                         |
|------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-----------------------|------------------------|--------------------------|-------------------------|------------------------|-------------------------|-------------------------|
|                                                                                                      | Ga(III) <sup>[a,b]</sup> | Cu(II) <sup>[a]</sup> | Zn(II) <sup>[a]</sup> | Ga(III) <sup>[a]</sup> | Cu(II) <sup>[a, c]</sup> | Zn(II) <sup>[a,c]</sup> | Ga(III) <sup>[a]</sup> | Cu(II) <sup>[a,c]</sup> | Zn(II) <sup>[a,c]</sup> |
| M + L<br>⇔[M(L)]                                                                                     | 18.53                    | 10.85                 | 11.93                 | 22.08                  | 19.1                     | 15.8                    | 18.36                  | 14.52                   | 13.38                   |
| [M(HL)] ↔<br>[M(L)] + H                                                                              | 1.0                      | 3.38                  | 2.33                  | 5.40                   | 5.0                      | 6.8                     | 4.04                   | 4.54                    | 4.65                    |
| $[M(H_2L)] \leftrightarrow$<br>[M(HL)] + H                                                           | -                        | -                     | -                     |                        | 2.8                      | 1.8                     | -                      | 3.10                    | 1.77                    |
| $[M(L)] + H_2O$<br>$\Leftrightarrow$<br>[M(L)(OH)] +<br>H                                            | 4.41                     | 9.86                  | 11.27                 | [C]                    | 12.5                     | 12.2                    | 5.27                   | 10.52                   | 12.24                   |
| $\begin{array}{l} [M(L)(OH)] \ + \\ H_2O & \longleftrightarrow \\ [M(L)(OH)_2] \ + \\ H \end{array}$ | 9.63                     | 12.00                 | -                     | [c]                    | -                        | -                       | -                      | -                       | -                       |

Table S 2: Equilibrium constants (*logK*) obtained for complexes

<sup>[a]</sup> Determined by potentiometric titration ([L] = [M] = 0.004 M, T = 25 °C, I = 0.1 M (NMe<sub>4</sub>)Cl), <sup>[b]</sup> Determined by UV-VIS titration ([L] = [M] = 0.1 mM, T = 25 °C, pH = 2-7)<sup>c]</sup> Determined by UV-VIS titration [L] = [M] = 0.01 mM, T = 25 °C, pH = 0-2)

**Table S 3**: Overall stability constants,  $log\beta_{hlm_1}$  of the complexes. (T = 25 eC, I = 0.1 M (NMe<sub>4</sub>)Cl). Charges are omitted.

| Ligand                   |                          | H₃Dpaa                |                       |                        | H₃Dpaa.dab              |                         |          | H₄Dpaa.ga                |                          |
|--------------------------|--------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|----------|--------------------------|--------------------------|
| Metal                    | Ga(III) <sup>[a,b]</sup> | Cu(II) <sup>[a]</sup> | Zn(II) <sup>[a]</sup> | Ga(III) <sup>[a]</sup> | Cu(II) <sup>[a,c]</sup> | Zn(II) <sup>[a,c]</sup> | Ga(III)  | Cu(II) <sup>[a, c]</sup> | Zn(II) <sup>[a, c]</sup> |
| [M(L)]                   | 18.53(5)                 | 10.85(1)              | 11.93(3)              | 22.08(1)               | 19.1(1)                 | 15.8(1)                 | 18.36(3) | 14.52(7)                 | 13.38(7)                 |
| [M(HL)]                  | 19.5(2)                  | 14.23(1)              | 14.26(4)              | 27.48(2)               | 24.1(1)                 | 22.6(1)                 | 22.40(3) | 19.06(7)                 | 18.03(7)                 |
| [M(H <sub>2</sub> L)]    | -                        | -                     | -                     |                        | 26.9(1)                 | 24.3(1)                 | -        | 22.16(7)                 | 19.80(8)                 |
| [M(L)(OH)]               | 14.12(2)                 | 0.99(2)               | 0.66(3)               |                        | 6.6(1)                  | 3.6(1)                  | 13.09(1) | 4.00(7)                  | 1.14(7)                  |
| [M(L)(OH) <sub>2</sub> ] | 4.49(8)                  | -11.01(2)             | -                     | а                      | -                       | -                       |          |                          |                          |

<sup>[a]</sup> Determined by potentiometric titration ([L] = [M] = 0.004 M, T = 25 °C, I = 0.1 M (NMe<sub>4</sub>)Cl), <sup>[b]</sup> Determined by UV-VIS titration ([L] = [M] = 0.1 mM, T = 25 °C, pH = 2-7) <sup>[c]</sup> Determined by UV-VIS titration ([L] = [M] = 0.01 mM, T = 25 °C, pH = 0-2)



Figure S 3: Speciation diagram for Metal –  $H_3Dpaa$  systems. A) Ga(III), B) Cu(II), C) Zn(II) ( $T = 25 \text{ }^{\circ}C$ ,  $I = 0.1 \text{ }^{\circ}M$  (NMe<sub>4</sub>)Cl, [L] = [M] =0.004 M)



**Figure S 4** : UV-Vis titration of GaDpaa: UV-VIS titration (A) of Ga(III)-H<sub>3</sub>Dpaa, difference of absorbance  $\Delta A = A_{216 nm} - A_{270}$ <sub>nm</sub> was used to evaluate results, the line corresponds to the best fits. The corresponding UV-VIS spectra (B) of Ga(III)-H<sub>3</sub>Dpaa system.(T = 25 °C, [L] = [M] =0.1 mM.)



Figure S 5: Speciation diagram for Metal –  $H_3Dpaa.dab$  systems. C) Ga(III) A) Cu(II), B) Zn(II) ( $T = 25 \text{ }^{\circ}C$ , I = 0.1 M (NMe<sub>4</sub>)Cl, [L] = [M] =0.1 mM.)



**Figure S 6**: UV-VIS titration at 220 nm (A) of Cu(II)-H<sub>3</sub>Dpaa.dab (red) and Zn(II)- H<sub>3</sub>Dpaa.dab (green), the lines correspond to the best fits. The corresponding UV-VIS spectra (B) of H<sub>3</sub>Dpaa.dab (blue), Cu(II)- H<sub>3</sub>Dpaa.dab (red) and Zn(II)- H<sub>3</sub>Dpaa.dab (green) at pH = 2.



Figure S 7: Speciation diagram for Metal – H<sub>4</sub>Dpaa.ga systems. A) Ga(III), B) Cu(II), C) Zn(II) (T = 25 °C, I = 0.1 M (NMe<sub>4</sub>)Cl, [L] = [M] =0.004 M).



**Figure S 8**: UV-VIS titration at 220 nm (A) of Cu(II)-H<sub>4</sub>Dpaa.ga (red) and Zn(II)- H<sub>4</sub>Dpaa.ga (green), the lines correspond to the best fits. The corresponding UV-VIS spectra (B) of H<sub>4</sub>Dpaa.ga (blue), Cu(II)- H<sub>4</sub>Dpaa.ga (red) and Zn(II)- H<sub>4</sub>Dpaa.ga (green) at pH = 2. ( $T = 25 \text{ }^{\circ}\text{C}$ , [L] = [M] =0.01 mM



**Figure S 9**: HPLC traces of A) <sup>68</sup>Ga, B,C,D) radiolabeling mixtures containing <sup>68</sup>Ga and B) H<sub>3</sub>Dpaa C) H<sub>3</sub>Dpaa.dab, D) H<sub>4</sub>Dpaa.ga. ([L] = 100  $\mu$ M, pH = 7.4, *I* = PBS, *T* = 37.7 °C, *t* = 5 minutes)



**Figure S 10**: Radio-TLC of a) <sup>68</sup>GaCl<sub>3</sub>, b) <sup>68</sup>GaCl<sub>3</sub> + H<sub>3</sub>Dpaa, b) <sup>68</sup>GaCl<sub>3</sub> + H<sub>3</sub>Dpaa.dab, D) <sup>68</sup>GaCl<sub>3</sub> + H<sub>4</sub>Dpaa.ga. [L] = 100  $\mu$ M, *I* = PBS, *T* = 37.5 °C, *t* = 15 mins.



Figure S 11: Semi-preparative HPLC chromatogram for the purification of <sup>68</sup>GaDpaa. A) Radio-HPLC trace. B) UV-HPLC trace



Figure S 12: Semi-preparative HPLC chromatogram for the purification of <sup>68</sup>GaDpaa.dab. A) Radio-HPLC trace. B) UV-HPLC trace



Figure S 13: Semi-preparative HPLC chromatogram for the purification of <sup>68</sup>GaDpaa.ga. A) Radio-HPLC trace. B) UV-HPLC trace

#### **1.6 Radiolabelling of standard chelates**

**Table S 4**: Radiochemical yields (RCY) of standard chelators with  ${}^{68}$ Ga. (pH = 7.5, T = 25 °C, [L] = 100 uM, I = 0.1 M phosphate buffer)

| Ligand | 5 minutes | 15 minutes |
|--------|-----------|------------|
| DOTA   | 0         | 0          |
| NOTA   | 33        | 48         |
| EDTA   | 95        | 95         |
| ТНР    | 95        | 95         |



**Figure S 14**: Stability of GaDpaa to transferrin. A)  ${}^{68}$ GaCl<sub>3</sub> + H<sub>3</sub>Dpaa (I = 0.1 M aq. NaOAc, pH = 4.5, T = RT). B) A after incubation with transferrin for 1 hour, C) A after incubation with transferrin for 2 hours.





**Figure S 15:** Stability of radiolabelled complexes assessed by radio-TLC. A) Radiolabelling mixture containing 100  $\mu$ M H<sub>3</sub>Dpaa in PBS after 15 minutes incubation at 37 °C. B) Solution containing 100  $\mu$ L of radiolabelling mixture A and 1.5 mL FBS after incubation at 37 °C for 30 minutes. C) Radiolabelling mixture containing 100  $\mu$ M H<sub>3</sub>Dpaa.dab in PBS after 15

minutes incubation at 37 °C. D) Solution containing 100  $\mu$ L of radiolabelling mixture C and 1.5 mL FBS after incubation at 37 °C for 30 minutes. E) Radiolabelling mixture containing 100  $\mu$ M H<sub>4</sub>Dpaa.ga in PBS after 15 minutes incubation at 37 °C. F) Solution containing 100  $\mu$ L of radiolabelling mixture E and 1.5 mL FBS after incubation at 37 °C for 30 minutes.

#### 2. NMR Data



Figure S 17: <sup>1</sup>H NMR of [Ga(Dpaa)] in  $D_2O$  (pD = 8.8)



Figure S 19: <sup>1</sup>H NMR of [Ga(Dpaa.dab)] in  $D_2O$  (pD = 1.1)



Figure S 21: <sup>1</sup>H NMR of [Ga(Dpaa.ga)] in  $D_2O$  (pD = 6.0)

## 3. Crystal Data

#### **3.1** H<sub>4</sub>Dpaa.ga crystals structure



**Figure S 22:** ORTEP representation of H4Dpaa with atoms drawn as 50% probability ellipsoids. Small-scale disorder (C16a/C17a & C16b/C17b) was modelled using standard techniques.

Table S 5: Crystal data and structure refinement for  $\rm H_4Dpaa.ga$  .

| Identification code             | shelx                                 |               |
|---------------------------------|---------------------------------------|---------------|
| Empirical formula               | C19 H19 N3 O8                         |               |
| Formula weight                  | 417.37                                |               |
| Temperature                     | 150(2) К                              |               |
| Wavelength                      | 0.71073 Å                             |               |
| Crystal system                  | Monoclinic                            |               |
| Space group                     | P 2 <sub>1</sub> /n                   |               |
| Unit cell dimensions            | a = 7.0852(6) Å                       | a= 90°        |
|                                 | b = 32.290(4) Å                       | b= 94.108(7)° |
|                                 | c = 7.6786(6) Å                       | g = 90°       |
| Volume                          | 1752.2(3) Å <sup>3</sup>              |               |
| Z                               | 4                                     |               |
| Density (calculated)            | 1.582 Mg/m <sup>3</sup>               |               |
| Absorption coefficient          | 0.125 mm <sup>-1</sup>                |               |
| F(000)                          | 872                                   |               |
| Crystal size                    | 0.275 x 0.130 x 0.056 mm <sup>3</sup> |               |
| Theta range for data collection | 1.261 to 25.550°.                     |               |
|                                 | -8<=h<=8, -38<=k<=38, -               |               |
| Index ranges                    | 9<=l<=9                               |               |
| Reflections collected           | 9845                                  |               |
| Independent reflections         | 3229 [R(int) = 0.0571]                |               |
| Completeness to theta = 25.242° | 99.90%                                |               |
| Refinement method               | Full-matrix least-squares on F2       |               |
| Data / restraints / parameters  | 3229 / 0 / 275                        |               |
| Goodness-of-fit on F2           | 0.792                                 |               |
| Final R indices [I>2sigma(I)]   | R1 = 0.0440, wR2 = 0.0727             |               |
| R indices (all data)            | R1 = 0.1003, wR2 = 0.0804             |               |
| Extinction coefficient          | n/a                                   |               |
| Largest diff. peak and hole     | 0.400 and -0.220 e.Å <sup>-3</sup>    |               |

# 3.2 GaDpaa crystal structure



Figure S 23: ORTEP diagram of Ga.Dpaa with atoms drawn as 50 % thermal ellipsoids.

Table S 6: Crystal data and structure refinement for Ga.Dpaa

| Identification code            | Ga.Dpaa                                                |  |  |
|--------------------------------|--------------------------------------------------------|--|--|
| Empirical formula              | C32 H40 Ga2 N6 O20                                     |  |  |
| Formula weight                 | 968.14                                                 |  |  |
| Temperature                    | 100(2) К                                               |  |  |
| Wavelength                     | 0.6889 Å                                               |  |  |
| Crystal system                 | Triclinic                                              |  |  |
| Space group                    | P -1                                                   |  |  |
| Unit cell dimensions           | a = 7.06810(10) Å a= 93.6180(10)°                      |  |  |
|                                | b = 8.21920(10) Å b= 93.7920(10)°                      |  |  |
|                                | c = 15.9952(2) Å g = 91.9130(10)°                      |  |  |
| Volume                         | 924.69(2) Å <sup>3</sup>                               |  |  |
| Z                              | 1                                                      |  |  |
| Density (calculated)           | 1.739 Mg/m <sup>3</sup>                                |  |  |
| Absorption coefficient         | 1.425 mm <sup>-1</sup>                                 |  |  |
| F(000)                         | 496                                                    |  |  |
| Crystal size                   | 0.040 × 0.005 × 0.005 mm <sup>3</sup>                  |  |  |
| Theta range for data           |                                                        |  |  |
| collection                     | 1.239 to 36.179°.                                      |  |  |
| Index ranges                   | $-11 \le h \le 12, -13 \le k \le 13, -27 \le l \le 27$ |  |  |
| Reflections collected          | 20701                                                  |  |  |
| Independent reflections        | 8614 [R(int) = 0.0570]                                 |  |  |
| Completeness to theta =        | 22.402/                                                |  |  |
| 24.415                         | 99.40%                                                 |  |  |
| Refinement method              | Full-matrix least-squares on F2                        |  |  |
| Data / restraints / parameters | 8614 / 18 / 304                                        |  |  |
| Goodness-of-fit on F2          | 1.01                                                   |  |  |
| Final R indices [I>2sigma(I)]  | R1 = 0.0425, wR2 = 0.1063                              |  |  |
| R indices (all data)           | R1 = 0.0491, wR2 = 0.1099                              |  |  |
| Extinction coefficient         | none                                                   |  |  |
| Largest diff. peak and hole    | 1.606 and -0.543 e.Å⁻³                                 |  |  |

#### 3.3 GaDpaa.ga crystal structure



Figure S 24: ORTEP diagram of GaDpaa.ga with atoms drawn as 50 % thermal ellipoids.

The compound crystallises in the centric space group Pccn (Z = 8) with discrete complexes and unbound water molecules. Between the complexes there are C–H…O interactions and there is evidence for  $\pi$ … $\pi$  interactions between face-on pyridine rings. The complexes are arranged such that there are broad channels running parallel to the crystallographic –c-axis. Within these channels are located the unbound water molecules.

The structure presented above was determined using synchrotron radiation ( $\lambda = 0.6889$  Å) and a data collection that lasted 12 minutes in total. The structure determination confirms the chemical connectivity and the binding of gallium, although the fit parameters are only moderately good (R1 = 0.1133 for data with I > 2 $\sigma$ I). The crystal examined was found to suffer from damage in the X-ray beam; this causes a loss of intensity in the X-ray scattering and always leads to poor quality of fit of the model to data. Interestingly in this case, a total of 70 minutes X-ray scattering data were collected from one crystal and it is possible to refine the structure using all of the data (70 minutes). This gives a hint as to the mode of decomposition of the compound in the X-ray beam. The structure refined from all data is shown below.



**Figure S 25**: ORTEP representation of decomposed form of GaDpaa.ga. Hydrogen atoms have been omitted for clarity. Atoms are drawn at the 30% probability level.

The major portion of the ligand is unchanged, but two key changes are observed. There is loss of water (O5a/O5b) and the ligand starts to decompose. There is evidence that this decomposition involves loss of the arm containing unbound carboxylate and in particular with loss of  $CO_2$ . In the structure refinement the carboxylate O7-C19-O8 is 34 % occupied and C17&C18 are 58% occupied.

The decomposition of the ligand and loss of water is accompanied by fracture of the crystal and loss of scattered intensity.

 Table S 7: Crystal data and structure refinement for GaDpaa.ga. (12 minutes – limited decomposition)

| Identification code            | GaDpaa.ga                            |                 |  |
|--------------------------------|--------------------------------------|-----------------|--|
| Empirical formula              | C19 H15 Ga N3 O12.87                 |                 |  |
| Formula weight                 | 561.02                               |                 |  |
| Temperature                    | 100(2) K                             |                 |  |
| Wavelength                     | 0.6889 Å                             |                 |  |
| Crystal system                 | Orthorhombic                         |                 |  |
| Space group                    | Pccn                                 |                 |  |
| Unit cell dimensions           | a = 20.7850(12) Å                    | a= 90°          |  |
|                                | b = 30.2224(18) Å                    | b= 90°          |  |
|                                | c = 7.2085(6) Å                      | g = 90°         |  |
| Volume                         | 4528.2(5) ų                          |                 |  |
| Z                              | 8                                    |                 |  |
| Density (calculated)           | 1.646 Mg/m <sup>3</sup>              |                 |  |
| Absorption coefficient         | 1.186 mm <sup>-1</sup>               |                 |  |
| F(000)                         | 2272                                 |                 |  |
| Crystal size                   | 0.060 × 0.005 × 0.005 m              | 1m <sup>3</sup> |  |
| Theta range for data           |                                      |                 |  |
| collection                     | 1.152 to 24.835°.                    |                 |  |
| Index ranges                   | $-18 \le h \le 25, -34 \le k \le 30$ | 6, -5 ≤ l ≤ 8   |  |
| Reflections collected          | 12211                                |                 |  |
| Independent reflections        | 4251 [R(int) = 0.2109]               |                 |  |
| Completeness to theta =        |                                      |                 |  |
| 24.415°                        | 98.70%                               |                 |  |
| Refinement method              | Full-matrix least-square             | s on F2         |  |
| Data / restraints / parameters | 4251 / 0 / 324                       |                 |  |
| Goodness-of-fit on F2          | 1.009                                |                 |  |
| Final R indices [I>2sigma(I)]  | R1 = 0.1133, wR2 = 0.2750            |                 |  |
| R indices (all data)           | R1 = 0.1749, wR2 = 0.3333            |                 |  |
| Extinction coefficient         | none                                 |                 |  |
| Largest diff. peak and hole    | 2.429 and -1.265 e.Ă <sup>−3</sup>   |                 |  |