pH-stable Eu- and Tb-organic-frameworks mediated by ionic liquid for aqueous-phase detection of 2,4,6-trinitrophenol (TNP)

Jian-Hua Qin, Hua-Rui Wang, Min-Le Han, Xin-Hong Chang and Lu-Fang Ma*

College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China,

Author for correspondence:

Prof. L-F Ma, E-mail: mazhuxp@126.com.

Supporting Information

- Fig. S1-S3 Supporting structure figure.
- Fig. S4 PXRD patterns of 1 and 2.
- Fig. S5 Thermogravimetric curves of 1 and 2.
- Fig. S6 Solid-state excitation and emission spectra for H₂L.
- Fig. S7-S15 Details of detecting of nitroaromatic explosives of 1 and 2 in the aqueous phase.
- Fig. S16 The absorption spectrum of the selected analytes in water.
- Table S1. Crystallographic data and structure refinement details for 1 and 2.
- Table S2-S3. Selected bond lengths (Å) and angles (°) for 1 and 2.
- Table S4. Saturated vapor pressure and Reduction Potential for each of the analytes.
- Table S5. Approximate sizes of selected analytes.
- Table S6. HOMO and LUMO energies calculated for H₂L and nitroaromatic explosives at

B3LYP/6-31G** level of theory.

Fig. S1 View of the rod-shaped Eu(III)-carboxylate SBUs.

Fig. S2 View of 2D layer constructed by the isophthalic acid segment of L ligands.

Fig. S3 View of $\pi \cdots \pi$ stacking between L ligands. H atoms are omitted for clarity.

Fig. S4 PXRD patterns of 1 and 2.

Fig. S5 Thermogravimetric curves of 1 and 2.

Fig. S6 Solid-state excitation and emission spectra for H₂L.

Fig. S7 The emission spectra for **1** dispersed in H₂O, MeCN, DMF, BZ, TO, PX and 1 mM or saturated aqueous solutions of seven different analytes at room temperature.

Fig. S8 The fluorescent intensity (609 nm) for 1 dispersed in H_2O , MeCN, DMF, BZ, TO, PX and 1 mM or saturated aqueous solutions of seven different analytes at room temperature.

Fig. S9 The emission spectra for **2** dispersed in H₂O, MeCN, DMF, BZ, TO, PX and 1 mM or saturated aqueous solutions of seven different analytes at room temperature.

Fig. S10 The emission spectra for 2 dispersed in H_2O and 1 mM or saturated aqueous solutions of the selected analytes at room temperature.

Fig. S11 The fluorescent intensity (544 nm) for **2** dispersed in H₂O, MeCN, DMF, BZ, TO, PX and 1 mM or saturated aqueous solutions of seven different analytes at room temperature.

Fig. S12 Quenching efficiency of the fluorescent intensity for 2 dispersed in 1 mM or saturated aqueous solutions of the selected analytes at room temperature.

Fig. S13 Fluorescence titration of 2 dispersed in aqueous solution by gradual addition of TNP.

Fig. S14 Stern-Volmer plot of $F_0/F vs$. TNP concentration in aqueous solution for 1.

Fig. S15 Stern-Volmer plot of F_0/F vs. TNP concentration in aqueous solution for 2.

Fig. S16 The absorption spectrum of the selected analytes in water.

Complex	1	2
Empirical formula	C59H38Eu2N6O14	$C_{59}H_{38}N_6O_{14}Tb_2$
Formula weight	1358.87	1372.79
Crystal system	monoclinic	monoclinic
Space group	P2/c	P2/c
a/Å	8.0717(3)	8.0636(8)
b/Å	16.6471(6)	16.5777(17)
c/Å	19.9993(7)	20.0148(19)
$\alpha / ^{\circ}$	90	90
β/°	109.831(3)	110.015(3)
$\gamma/^{\circ}$	90	90
Volume/Å ³	2527.95(16)	2513.9(4)
Z	2	2
$\rho_{calc}g/cm^3$	1.785	1.814
μ/mm^{-1}	2.538	2.870
F(000)	1344.0	1352.0
2Θ range for data collection/°	5.898 to 54.998	4.98 to 54.998
Reflections collected	11618	20084
Independent reflections	5577 [$R_{int} = 0.0300, R_{sigma} = 0.0482$]	5677 [$R_{int} = 0.0303, R_{sigma} = 0.0335$]
Data/restraints/parameters	5577/47/367	5677/39/367
Goodness-of-fit on F ²	1.027	1.194
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0294, wR_2 = 0.0586$	$R_1 = 0.0433, wR_2 = 0.0910$
Final R indexes [all data]	$R_1 = 0.0399, wR_2 = 0.0633$	$R_1 = 0.0515, wR_2 = 0.0938$

 Table S1. Crystallographic data and experimental details for 1 and 2.

 $\mathbf{R} = \left[\sum \left| \left| \mathbf{F}_{0} \right| \right| \left| \mathbf{F}_{0} \right| \right| / \sum \left| \mathbf{F}_{0} \right| \right], \ \mathbf{R}_{W} = \sum_{W} \left[\left| \mathbf{F}_{0}^{2} - \mathbf{F}c^{2} \right|^{2} / \sum_{W} \left(\left| \mathbf{F}_{W} \right|^{2} \right)^{2} \right]^{1/2}$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Eu1	O11	2.414(2)	Eu1	O4 ⁴	2.384(2)
Eu1	O21	2.759(2)	Eu1	06	2.384(3)
Eu1	02	2.366(2)	Eu1	07	2.3144(14)
Eu1	O3 ³	2.335(2)	Eu1	N1 ⁵	2.693(3)

Table S2. Selected bond lengths (Å) and angles ($^\circ~$) for 1.

 $^{1}3\text{-}X, +Y, 5/2\text{-}Z; \ ^{2}2\text{-}X, +Y, 5/2\text{-}Z; \ ^{3}+X, 2\text{-}Y, 1/2\text{+}Z; \ ^{4}2\text{-}X, 2\text{-}Y, 2\text{-}Z; \ ^{5}1\text{+}X, 1\text{-}Y, 1/2\text{+}Z; \ ^{6}+X, 2\text{-}Y, -1/2\text{+}Z; \ ^{7}-1\text{+}X, 1\text{-}Y, 1/2\text{+}Z; \ ^{7}-1\text{+}X, 1\text{-}Y, 1/2\text{+}Z; \ ^{7}-1\text{+}X, 1$ {+}Y, 1/2\text{+}X; 1{+}Y, 1/2\text{+}X, 1{+}Y, 1/2\text{+}X; 1{+}Y, 1/2\text

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O1 ¹	Eu1	O21	49.94(7)	06	Eu1	O1 ¹	80.74(9)
011	Eu1	N1 ³	77.66(9)	O6	Eu1	$O2^1$	71.95(9)
02	Eu1	O1 ¹	116.55(8)	06	Eu1	$O4^4$	71.45(9)
02	Eu1	O21	67.53(9)	06	Eu1	N1 ³	144.68(9)
02	Eu1	O4 ⁴	76.43(8)	07	Eu1	O11	119.72(7)
02	Eu1	O6	90.64(9)	07	Eu1	$O2^1$	144.35(10)
02	Eu1	N1 ³	74.78(9)	07	Eu1	02	103.62(7)
O3 ⁵	Eu1	O11	74.71(8)	07	Eu1	O3 ⁵	79.84(8)
O3 ⁵	Eu1	02	162.40(9)	07	Eu1	O4 ⁴	79.62(8)
O3 ⁵	Eu1	O21	119.43(7)	07	Eu1	06	143.70(11)
O3 ⁵	Eu1	O4 ⁴	87.40(9)	07	Eu1	N1 ³	71.61(10)
O3 ⁵	Eu1	06	77.45(10)	$O4^4$	Eu1	O21	127.37(7)
O3 ⁵	Eu1	N1 ³	122.20(10)	$O4^4$	Eu1	N13	132.54(9)
O4 ⁴	Eu1	O1 ¹	149.67(9)				

¹3-X,+Y,5/2-Z; ²2-X,+Y,5/2-Z; ³1+X,1-Y,1/2+Z; ⁴2-X,2-Y,2-Z; ⁵+X,2-Y,1/2+Z; ⁶+X,2-Y,-1/2+Z; ⁷-1+X,1-Y,-1/2+Z; ⁴-X,2-Y,2-Z; ⁵+X,2-Y,1/2+Z; ⁶+X,2-Y,-1/2+Z; ⁷-1+X,1-Y,-1/2+Z; ⁴-X,2-Y,2-Z; ⁵+X,2-Y,1/2+Z; ⁶+X,2-Y,-1/2+Z; ⁷-1+X,1-Y,-1/2+Z; ⁴-X,2-Y,2-Z; ⁵+X,2-Y,1/2+Z; ⁶+X,2-Y,-1/2+Z; ⁷-1+X,1-Y,-1/2+Z; ⁴-X,2-Y,2-Z; ⁵+X,2-Y,1/2+Z; ⁶+X,2-Y,-1/2+Z; ⁷-1+X,1-Y,-1/2+Z; ⁴-X,2-Y,2-Y,2-Z; ⁵+X,2-Y,2-Y,2-Z; ⁵+X,2-Y,2-Y,2-X; ⁵+X,2-Y,2-Y,2-X; ⁵+X,2-Y,2-X; ⁵+X,2-Y,2-X; ⁵+X,2-X,2-Y,2-X; ⁵+X,2-X,2-Y,2-X; ⁵+X,2-X,2-Y,2-X; ⁵+X,2-X,2-X; ⁵+X,2-X,2-X; ⁵+X,2-X; ⁵+X; ⁵+X,2-X; ⁵+X; ⁵+X,2-X; ⁵+X;

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Tb1	O11	2.382(4)	Tb1	O4 ³	2.367(4)
Tb1	O21	2.816(4)	Tb1	O6	2.342(4)
Tb1	02	2.335(4)	Tb1	07	2.281(2)
Tb1	O3 ²	2.306(4)	Tb1	N14	2.664(5)

Table S3. Selected bond lengths (Å) and angles ($^\circ~$) for 2.

Atom Ato	om Atom	Angle/°	Atom A	tom Atom	Angle/°
O1 ¹ Tb	1 O2 ¹	49.10(12)	O6 7	Гb1 N1 ²	144.28(16)
O1 ¹ Tb	1 N1 ²	77.04(15)	O7 7	Гb1 О1 ¹	120.88(12)
O1 ¹ Tb	1 C1 ¹	23.81(13)	O7 7	Гb1 О2	103.42(11)
O2 Tb	1 O1 ¹	115.31(13)	O7 7	Гb1 О2 ¹	145.05(15)
O2 Tb	1 O21	67.24(13)	O7 7	Гb1 O3 ⁴	79.91(13)
O2 Tb	1 O4 ³	76.88(14)	O7 7	Гb1 О4 ³	78.89(13)
O2 Tb	1 06	90.68(15)	O7 7	Гb1 Об	143.67(16)
O2 Tb	1 N1 ²	74.77(16)	07	Гb1 N1 ²	72.05(17)
O3 ⁴ Tb	1 O1 ¹	75.14(13)	N1 ²	Гb1 О21	73.01(14)
O3 ⁴ Tb	1 02	163.33(15)	O4 ³	Гb1 O1 ¹	150.01(15)
O3 ⁴ Tb	1 O2 ¹	119.07(12)	O4 ³	Гb1 O2 ¹	127.28(12)
O3 ⁴ Tb	1 O4 ³	87.91(14)	O4 ³	Гb1 N1 ²	132.78(15)
O3 ⁴ Tb	1 06	77.95(16)	O6	Гb1 O1 ¹	80.36(15)
O3 ⁴ Tb	1 N1 ²	121.39(17)	O6	Гb1 О2 ¹	71.28(14)
O6 Tb	1 O4 ³	71.89(14)	O6	Гb1 N1 ²	144.28(16)
O1 ¹ Tb	1 O2 ¹	49.10(12)			

¹3-X,+Y,5/2-Z; ²1+X,1-Y,1/2+Z; ³2-X,2-Y,2-Z; ⁴+X,2-Y,1/2+Z; ⁵+X,2-Y,-1/2+Z; ⁶2-X,+Y,5/2-Z; ⁷-1+X,1-Y,-1/2+Z; ⁷-1+X,1-Y,-1/2+Z; ⁷-1+X,1-Y,-1/2+Z; ⁷-1+X,1-Y,-1/2+Z; ⁷-1+X,1-Y,-1/2+Z; ⁷-1+X,1-Y,-1/2+Z; ⁷-1+X,1-X,1-X,1-X; ⁷-1+X,1-X,1-X,1-X; ⁷-1+X,1-X,1-X,1-X; ⁷-1+X,1-X,1-X,1-X; ⁷-1+X,1-X,1-X; ⁷-1+X,1-X,1-X; ⁷-1+X,1-X,1-X; ⁷-1+X,1-X,1-X; ⁷-1+X,1-X,1-X; ⁷-1+X,1-X,1-X; ⁷-1+X,1-X,1-X; ⁷-1+X,1-X; ⁷-1+X; ⁷-1+X,1-X; ⁷-

Analytes	Vapor Pressure (in mmHg)	Reduction Potential (in V vs SCE)
Nitrobenzene (NB) ¹	0.2416	-1.15
2-Nitrotoluene (2-NT) ¹	0.1602	-1.2
1,3-Dinitrobenzene(1,3-DNB) ²	8.82 x 10 ⁻⁴	-0.9
1,4-Dinitrobenzene (1,4- DNB) ¹	2.406 x 10 ⁻⁵	-0.7
2,4-dinitrotoluene (2,4-DNT) ¹	$1.44 imes 10^{-4}$	-1.0
2,6-dinitrotoluene (2,6- DNT) ^{1,3}	5.61 × 10 ⁻⁴	-1.0
2,4,6-trinitrotoluene (TNT) ^{1,4}	8.02×10^{-6}	-0.7
2,4,6-trinitrophenol (TNP) ⁴	5.8 × 10 ⁻⁹	-0.63

Table S4. Saturated vapor pressure and Reduction Potential for each of the analytes at room temperature (25 °C).

- 1 J. S. Yang and T. M. Swager, J. Am. Chem. Soc., 1998, 120, 11864.
- 2 R. Hoffmann, J. Chem. Phys., 1963, 39, 1397.
- 3 A. J. Lan, K. H. Li, H. H. Wu, L. Z. Kong, N. Nijem, D. H. Olson, T. J. Emge, Y. J. Chabal, D. C. Langreth, M. C. Hong and J. Li, *Inorg. Chem.*, 2009, **48**, 7165.

4 J. C. Sanchez and W. C. Trogler, J. Mater. Chem., 2008, 18, 3143.

Analytes	Approximate Size (D×W×L, Å)
NB	3.4 × 6.2 × 8.6
2-NT	5.0 imes 7.7 imes 8.6
1,3-DNB	$5.6 \times 7.7 \times 8.1$
1,4-DNB	5.6 × 7.7 × 9.1
2,4-DNT	5.6 × 7.7 × 10.1
2,6-DNT	5.6 × 7.7 × 9.5

Table S5. Approximate sizes of the selected analytes.

TNT	5.6 × 7.7 × 10.2
TNP	$5.0 \times 6.2 \times 7.1$

Table S6. HOMO and LUMO energies calculated for $\mathrm{H_2L}$ and nitroaromatic explosives at

B3LYP/6-31G** level of t	theory.
--------------------------	---------

Analytes	HOMO (eV)	LUMO (eV)	Band gap
H ₂ L	-6.50706	-2.0414	4.46566
NB ⁶	-7.5912	-2.4283	5.1629
2-NT ⁵	-7.36454	-2.31722	5.04732
1,3-DNB ⁶	-7.9855	-3.4311	4.5544
1,4-DNB ⁵	-8.35250	-3.49679	4.85571
2,4-DNT ⁶	-7.7645	-3.2174	4.5471
2,6-DNT ⁶	-7.6448	-3.2877	4.3571
TNT ⁶	-8.2374	-3.8978	4.3396
TNP ⁶	-8.4592	-3.4926	4.9666

5 G. Y. Wang, C. Song, D. M. Kong, W. J. Ruan, Z. Chang and Y. Li, J. Mater. Chem. A., 2014, 2, 2213.

6 S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee and S. K. Ghosh, Angew. Chem., Int. Ed., 2013, 52, 2881.