Supporting Information: DFT methods applied to answer the question: how accurate is the Ligand Acidity Constant method for estimating the pK_{a} of transition metal hydride complexes MHXL_{4} when X is varied?

Jan P. Unsleber ${ }^{a}$, Johannes Neugebauer ${ }^{a}$, and Robert H. Morris*

September 15, 2017

[^0]
S1 Special Geometries

As mentioned in Tab. 1 of the main article there were two optimized MHX $(\mathrm{CO})_{4}$ structures for which it was not possible to characterize them as either cis or trans according to the nomenclature shown in Fig. 3 of the main article. These two structures of $\mathrm{FeHB}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{CO})_{4}$ and $\mathrm{FeHN}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{CO})_{4}$ are shown in Fig. S1. Both structures were obtained from PBE0-D3BJ/def2-TZVP\{ECP:def2-SD $\}+$ COSMO-RS(THF) structure optimizations. The structures obtained with PBE0-D3BJ/def2-QZVP\{ECP:def2-SD $\}+$ DCOSMO-RS(THF) were virtually identical.

$\mathrm{FeHB}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{CO})_{4}$

$\mathrm{FeHN}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{CO})_{4}$

Figure S1: Geometries of $\mathrm{FeHB}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{CO})_{4}$ and $\mathrm{FeHN}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{CO})_{4}$ calculated PBE0-D3BJ/def2-TZVP\{ECP:def2SD $\}+$ COSMO-RS(THF)

S2 Correlation of A_{L} and Levers's Electrochemical Ligand Parameter E_{l}

When correlating the A_{L} values of anionic ligands with Levers's Electrochemical Ligand Parameter E_{l} it is possible to identify a similar trend as shown when correlating the A_{L} values of neutral ligands with Levers's Electrochemical Ligand Parameter. When shifting the anionic ligands by +13.116 V (difference of offsets in linear regression) a general general correlation can be observed. This procedure is shown Figure S4.

Figure S2: LAC ligand parameters A_{L} vs. Levers's Electrochemical Ligand Parameter E_{l} including linear regression.

S3 Additional Natural Charges Analysis

In addition to the simpler $\left[\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{XH}\right]$ set of complexes, where X^{-}can be any halide, the natural charges for the halides in $\left[\mathrm{Ru}\left(\mathrm{PR}_{3}\right)_{4} \mathrm{XH}\right]$ were also calculated, and are shown in Table S1.

Table S1: Natural charges (partial charges) obtained from NPA/NBO analysis.

			Natural Charges of X^{-}		
X^{-}	$A_{L}^{D F T}$	El. Neg.	$\left[\mathrm{Ru}\left(\mathrm{PR}_{3}\right)_{4} \mathrm{XH}\right]$	$\left[\mathrm{Ru}\left(\mathrm{PR}_{3}\right)_{4} \mathrm{X}\right]^{-}$	Δ
F^{-}	-0.8	3.98	-0.78	-0.74	-0.03
Cl^{-}	-2.5	3.16	-0.66	-0.73	0.08
Br^{-}	-3.5	2.96	-0.62	-0.73	0.10
I^{-}	-4.8	2.66	-0.57	-0.72	0.15

S4 Detailed Validation Results

In order to assess the error of the methodology used for this article a large part of the structures were re-calculated using a bigger basis set and an improved implicit solvation model. The results of these calculations are shown in Tab. S2, the additional calculations for the CO ligand using the standard basis set and solvation model (def2-TZVP and COSMO-RS) are shown in Tab. S3. When comparing all results for $\mathrm{L}=\mathrm{CO}$ of Tab. S 2 and Tab. 1 of the main article [excluding the $\mathrm{X}^{-}=\mathrm{H}^{-}$calculations which serve as references] a mean absolute difference of $0.3 \mathrm{p} K_{a}$ units between the two data sets is calculated.

Table S2: Ligand parameters $\left(A_{L}^{\mathrm{DFT}}\right)$ in reference to H^{-}. Method: PBE0-D3BJ/def2-QZVP\{ECP:def2SD $\}+$ DCOSMO-RS(THF).

Ligands L	$(\mathrm{CO})_{4}$				$\left(\mathrm{PR}_{3}\right)_{4}$					
Ligand X^{-}	Fe	Ru	Os	avg.	Fe	Ru	Os	avg.	$A_{L}^{\text {DFT }}$	$A_{L}^{\text {LAC }}$
CH_{3}^{-}	1.5	1.6	1.9	1.7	-	-	-	-	-	-
NH_{2}^{-}	1.4	1.3	2.2	1.6	-	-	-	-	-	-
OH^{-}	-0.1	0.6	0.9	0.5	-	-	-	-	-	-
$\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}^{-}$	-1.4	-1.2	0.0	-0.9	-	-	-	-	-	-
H^{-}	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$\mathrm{B}\left(\mathrm{OCH}_{2}-\right)_{2}^{-}$	0.2	0.6	0.5	0.5	-	-	-	-	-	-
F^{-}	-3.9	-3.2	-1.9	-3.0	-	-	-	-	-	-
OCH_{3}^{-}	-2.1	-2.6	-1.0	-1.9	-	-	-	-	-	-
SH^{-}	-3.0	-2.1	-1.5	-2.2	-	-	-	-	-	-
$\mathrm{B}\left(\mathrm{CH}_{3}\right)_{2}^{-}$	$-\dagger$	1.2	0.7	1.0	-	-	-	-	-	-
$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}^{-}$	- \dagger	-0.3	-0.7	-0.5	-	-	-	-	-	-
Cl^{-}	-5.9	-4.7	-3.5	-4.7	-	-	-	-	-	-6.0
SCH_{3}^{-}	-2.0	-1.5	-0.8	-1.5	-	-	-	-	-	-
$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}^{-}$	-1.1	-0.8	-0.6	-0.8	-	-	-	-	-	-
Br^{-}	-6.2	-4.9	-3.8	-5.0	-	-	-	-	-	-
I^{-}	-6.4	-5.2	-4.2	-5.3	-	-	-	-	-	-
CN^{-}	-8.9	-7.2	-6.4	-7.5	-	-	-	-	-	-11.0
SiCl_{3}^{-}	-11.0	-9.1	-8.3	-9.4	-	-	-	-	-	-12.0
CO*	-3.7	-0.5	1.9	-0.8	-3.8	-2.1	-4.0^{\ddagger}	-3.3	-2.0	-4.1

${ }^{*}$ Values given, assuming $\Delta C_{\text {charge }}=30$.
${ }^{\dagger}$ Geometries discussed in Sec. S1 and shown in Fig. S1, values removed from study.
${ }^{\ddagger}$ The geometry of $\left[\mathrm{OsH}(\text { trans- } \mathrm{CO})\left(\mathrm{PR}_{3}\right)_{4}\right]^{+}$did not fully converge and had two small imaginary frequencies remaining. The optimization oscillated within less than $0.3 \mathrm{~kJ} / \mathrm{mol}$ and the remaining unoptimized modes corresponded to concerted methyl rotations in the backbone. But even assuming a variation of $\pm 0.5 \mathrm{~kJ} / \mathrm{mol}$, the value reported for this ligand as well as the average values reported in the table above remain unchanged. Hence we decided to include this value in our statistics, in spite of the incomplete convergence.

Table S3: Ligand parameters $\left(A_{L}^{\mathrm{DFT}}\right)$ for CO, in reference to H^{-}. Method: PBE0-D3BJ/def2-TZVP\{ECP:def2SD $\}+$ COSMO-RS(THF).

Ligands L	$(\mathrm{CO})_{4}$				$\left(\mathrm{PR}_{3}\right)_{4}$					
Ligand X^{-}	Fe	Ru	Os	avg.	Fe	Ru	Os	avg.	$A_{L}^{\text {DFT }}$	$A_{L}^{\text {LAC }}$
CO*	4.4	7.9	10.9	7.7	1.8	3.1	3.0	2.6	5.2	-4.1

Figure S3: Correlation of $\mathrm{p} K_{a}$ values calculated using an average A_{L}^{DFT} from all calculations of Ruthenium complexes and $\mathrm{p} K_{a}$ values calculated using the A_{L}^{DFT} values resulting from calculations on different metals.

S5 Energies and Geometries

In addition to this document two other files are part of the SI. A file named energies.txt and a compressed archive structures.tar. The first contains a list of all Gibbs energies in solution ΔG, for all data sets used. The latter contains all optimized geometries as .xyz files in a sorted folder structure.

[^0]: ${ }^{a}$ Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany.
 ${ }^{b}$ Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada. E-mail: rmorris@chem.utoronto.ca

