Electronic Supplementary Information for:

Protonation and electrochemical reduction of rhodium- and iridium-dinitrogen complexes in organic solution

G. P. Connor,^a N. Lease,^b A. Casuras,^b A. S. Goldman,^{*b} P. L Holland^{*a} and J. M. Mayer^{*a}

^aDepartment of Chemistry, Yale University, New Haven, Connecticut 06511, USA ^bDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, USA

TABLE OF CONTENTS:

Supplementary Data and Spectra	2
Fig. S1: FTIR spectrum of 1	2
Fig. S2: FTIR spectrum of 2	2
Fig. S3: ¹ H NMR spectra showing protonation of 1 with TFA in THF- d_8	3
Fig. S4: ³¹ P{ ¹ H} NMR spectra showing protonation of 1 with TFA in THF- d_8	4
Fig. S5: ¹⁹ F NMR spectra showing protonation of 1 with TFA in THF- d_8	5
Fig. S6: ³¹ P{ ¹ H} NMR spectra showing protonation of 1 with p CAH-BF ₄ and deprotonation of 1b	
with DBU under N_2	6
Fig. S7: ³¹ P{ ¹ H} NMR spectra showing protonation of 1 with p CAH-BF ₄ and deprotonation of 1b	
with DBU under Ar	7
Fig. S8: VT ¹ H NMR spectra upon protonation of 2 with DMAH-BF ₄ to form 2a	.8
Fig. S9: VT ³¹ P{ ¹ H} NMR spectra upon protonation of 2 with DMAH-BF ₄ to form 2a	9
Fig. S10: ³¹ P{ ¹ H} NMR spectra showing deprotonation of 2a with DBU under N ₂	10
Fig. S11: ³¹ P{ ¹ H} NMR spectra showing deprotonation of 2a with DBU under Ar	11
Fig. S12: ¹ H NMR spectrum showing formation of [(PCP)Ir(H)(py) _x] ⁺ from reaction of 2a	
with pyridine-d ₅	12
Fig. S13: ³¹ P{ ¹ H} NMR spectrum showing formation of [(PCP)Ir(H)(py) _x] ⁺ from reaction of 2a	
with pyridine-d ₅	13
Fig. S14: ATR-IR spectra of DMAH-BF ₄ , 2, and 2a	.14
Fig. S15: CV of 1 in THF with added equiv TFA	15
Fig. S16: CV of 2 in THF with added equiv TFA	16
Fig. S17: CV of 1 in THF with large excess of TFA	17
Fig. S18: CV of 2 in THF with large excess of TFA	18
Fig. S19: CV of 2 in THF with added DMAH-BF ₄	19
Fig. S20: ¹ H NMR spectra showing reduction of 2a with CoCp ₂ [*]	20
Fig. S21: ¹ H NMR spectrum of mixture of (PCP)IrH ₂ and (PCP)IrH ₄	21
Fig. S22: ³¹ P{ ¹ H} NMR spectrum of mixture of (PCP)IrH ₂ and (PCP)IrH ₄	22
References	23

Supplementary Data and Spectra:

Fig. S1: FTIR spectrum of 1

Fig. S3: ¹H NMR spectra showing protonation of 1 with TFA in THF- d_8

Bottom (1, maroon): 1.7 mg **1** (3.2 μmol) in THF- d_8 . ¹H NMR (500 MHz, THF- d_8): δ = 6.80 (d, ³ $J_{H,H}$ = 7.3 Hz, 2H, *m*-Ph), 6.59 (t, ³ $J_{H,H}$ = 7.3 Hz, 1H, *p*-Ph), 3.23 (m, 4H, CH₂), 1.35 (m, ² $J_{P,H}$ = 6.2 Hz, 36H, C(CH₃)₃). Top (2, teal): 1.7 mg **1** in THF- d_8 with 1.1 eq. TFA added. ¹H NMR (500 MHz, THF- d_8 , **1a**): δ = 6.85 (d, ³ $J_{H,H}$ = 7.3 Hz, 2H, *m*-Ph), 6.72 (t, ³ $J_{H,H}$ = 7.3 Hz, 1H, *p*-Ph), 3.38 – 3.13 (m, 4H, CH₂), 1.32 (m, ² $J_{P,H}$ = 6.4 Hz, 36H, C(CH₃)₃), -25.60 (dt, ¹ $J_{Rh,H}$ = 45.4, ² $J_{P,H}$ = 11.8 Hz, 1H, Rh-*H*). The spectrum describes a diamagnetic complex, and the loss of C_{2v} symmetry is evident from splitting of methylene and ^tBu resonances. A hydride peak is visible at -25.60 ppm. The PMe₃ peak is from the internal standard in a capillary tube.

Fig. S4: ³¹P{¹H} NMR spectra showing protonation of **1** with TFA in THF- d_8

85.5 85.0 84.5 84.0 83.5 83.0 82.5 82.0 81.5 81.0 80.5 80.0 79.5 79.0 78.5 78.0 77.5 77.0 76.5 76.0 f1 (ppm)

Bottom (1, maroon): 1.7 mg **1** (3.2 μmol) in THF- d_8 . ³¹P{¹H} NMR (162 MHz, THF- d_8): δ = 81.48 (d, ¹ $J_{P,Rh}$ = 158.2 Hz). Top (2, teal): 1.7 mg **1** in THF- d_8 with 1.1 eq. TFA added. ³¹P{¹H} NMR (202 MHz, THF- d_8): δ = 77.61 (dd, ¹ $J_{P,Rh}$ = 116.4 Hz, ² $J_{P,H}$ = 6.8 Hz, **1a**). Referenced to PMe₃ in a capillary tube.

Fig. S5: ¹⁹F NMR spectra showing protonation of **1** with TFA in THF- d_8

Bottom (1, maroon): 3.0 μmol TFA in THF- d_8 . ¹⁹F NMR (470 MHz, THF- d_8): δ = -80.67 (s). Top (2, teal): 3.0 μmol TFA with 1.4 mg **1** (2.7 μmol, 0.9 eq.) added in THF- d_8 . ¹⁹F NMR (470 MHz, THF- d_8): δ = -79.70 (s), -80.28 (br. s).

98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 f1 (ppm)

Bottom (1, maroon): 1.2 mg 1 (2.3 µmol) in THF- d_8 under N₂. ³¹P{¹H} NMR (202 MHz, THF- d_8): δ = 81.52 (d, ¹J_{P,Rh} = 157.9 Hz, 100%). *Middle (2, green)*: 1.2 mg 1 with 1 eq. *p*CAH-BF₄ in THF- d_8 under N₂. ³¹P{¹H} NMR (202 MHz, THF- d_8): δ = 77.83 (d, ¹J_{P,Rh} = 117.4 Hz, 90%, **1b**), 74.81 (d, ¹J_{P,Rh} = 112.7 Hz, 10%). *Top (3, blue)*: 1.2 mg 1 with 1 eq. *p*CAH-BF₄ and 1.1 eq. DBU in THF- d_8 under N₂. ³¹P{¹H} NMR (202 MHz, THF- d_8): δ = 81.53 (d, ¹J_{P,Rh} = 157.9 Hz, 90%), 74.80 (d, ¹J_{P,Rh} = 115.2 Hz, 10%). Protonation of 1 with *p*CAH-BF₄ under N₂ gives **1b**, and subsequent addition of DBU reforms complex **1** in 90% yield. Integrations are referenced to an internal standard of PMe₃ in a capillary tube, and yields are rounded to one significant figure.

Fig. S7: ³¹P{¹H} NMR spectra showing protonation of **1** with $pCAH-BF_4$ and deprotonation of **1b** with DBU under Ar

98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 f1 (ppm)

Bottom (1, maroon): 1.3 mg **1** (2.5 μmol) in THF- d_8 under Ar. ³¹P{¹H} NMR (202 MHz, THF- d_8): δ = 81.52 (d, ¹ $J_{P,Rh}$ = 158.0 Hz, 100%). *Middle (2, green):* 1.3 mg **1** with 1 eq. *p*CAH-BF₄ in THF- d_8 under Ar. ³¹P{¹H} NMR (202 MHz, THF- d_8): δ = 81.52 (d, ¹ $J_{P,Rh}$ = 157.7 Hz, 10%), 77.82 (br. d, ¹ $J_{P,Rh}$ = 121.2 Hz, 70%, **1b**), 75.45 (d, ¹ $J_{P,Rh}$ = 120.6 Hz, 20%). *Top (3, blue):* 1.3 mg **1** with 1 eq. *p*CAH-BF₄ and 1.1 eq. DBU in THF- d_8 under Ar. ³¹P{¹H} NMR (202 MHz, THF- d_8): δ = 93.25 (d, ¹ $J_{P,Rh}$ = 154.0 Hz, 10%), 81.54 (d, ¹ $J_{P,Rh}$ = 159.7 Hz, 20%), 74.80 (d, ¹ $J_{P,Rh}$ = 115.0 Hz, 10%), 74.28 (d, ¹ $J_{P,Rh}$ = 178.3 Hz, 70%). Integrations are referenced to an internal standard of PMe₃ in a capillary tube, and yields are rounded to one significant figure.

Fig. S8: VT ¹H NMR spectra upon protonation of 2 with DMAH-BF₄ to form 2a

Bottom (1, maroon): 3.4 mg **2** (5.5 μmol) in THF- d_8 . ¹H NMR (500 MHz, THF- d_8 , **2**): δ = 6.83 (d, ³ $J_{H,H}$ = 7.4 Hz, 2H, *m*-Ph), 6.54 (t, ³ $J_{H,H}$ = 7.4 Hz, 1H, *p*-Ph), 3.25 (m, 4H, CH₂), 1.33 (m, ² $J_{P,H}$ = 6.4 Hz, 36H, C(CH₃)₃). Second to bottom (2, gold): 3.4 mg **2** (5.5 μmol) with 1 eq. DMAH-BF₄ in THF- d_8 at 25 °C. ¹H NMR (500 MHz, THF- d_8 , **2a**) δ = 6.75 (d, ³ $J_{H,H}$ = 7.5 Hz, 2H, *m*-Ph), 6.57 (t, ³ $J_{H,H}$ = 7.5 Hz, 1H, *p*-Ph), 3.50 – 3.15 (m, 4H, CH₂), 1.34 (m, ² $J_{P,H}$ = 6.7 Hz, 18H, C(CH₃)₃), 1.27 – 1.15 (m, 18H, C(CH₃)₃). The spectrum describes a diamagnetic complex, and the loss of C_{2v} symmetry is evident from splitting of methylene and ^tBu resonances; however, no hydride resonance is resolved at ambient temperature. *Third from bottom and upwards (3-7, green through plum*): 3.4 mg **2** (5.5 μmol) with 1 eq. DMAH-BF₄ in THF- d_8 at various temperatures. A hydride resonance resolves at low temperatures and is visible at -40 °C at δ = -36.7 (br. s, 1H, Ir-H).

Fig. S9: VT ³¹P{¹H} NMR spectra upon protonation of 2 with DMAH-BF₄ to form 2a

Bottom (1, maroon): 3.4 mg **2** (5.5 μmol) in THF- d_8 . ³¹P{¹H} NMR (202 MHz, THF- d_8 , **2**): δ = 72.80 (s). Second to bottom (2, gold): 3.4 mg **2** (5.5 μmol) with 1 eq. DMAH-BF₄ in THF- d_8 at 25 °C. No phosphorus resonance is visible for the diamagnetic complex described in the corresponding ¹H NMR spectrum (see Fig. S8). Third from bottom and upwards (3-7, green through plum): 3.4 mg **2** (5.5 μmol) with 1 eq. DMAH-BF₄ in THF- d_8 at various temperatures. A phosphorus resonance resolves at low temperatures and is visible at -40 °C at δ = 69.15 (br. s).

Bottom (1, maroon): 2.8 mg **2** (4.6 μ mol) in THF- d_8 . ³¹P{¹H} NMR (202 MHz, THF- d_8 , **2**): δ = 72.80 (s). Middle (2, green): 2.8 mg **2** (4.6 μ mol) with 1 eq. DMAH-BF₄ in THF- d_8 . No phosphorus resonance is visible for the diamagnetic complex **2a** at 25 °C (see Fig. S9). *Top (3, blue)*: 2.8 mg **2** (4.6 μ mol) with 1 eq. DMAH-BF₄ and 1.1 eq. DBU in THF- d_8 . ³¹P{¹H} NMR (202 MHz, THF- d_8): δ = 72.80 (s). **2** is reformed in 97% yield upon deprotonation of **2a** with DBU under N₂. Integrations are referenced to an internal standard of PMe₃ in a capillary tube.

Fig. S11: ³¹P{¹H} NMR spectra showing deprotonation of 2a with DBU under Ar

Bottom (1, maroon): 1.3 mg 2 (2.1 µmol) in THF- d_8 . ³¹P{¹H} NMR (202 MHz, THF- d_8 , 2): δ = 72.80 (s). *Middle (2, green)*: 1.3 mg 2 (2.1 µmol) with 1 eq. DMAH-BF₄ in THF- d_8 . No phosphorus resonance is visible for the diamagnetic complex 2a at 25 °C (see Fig. S9). *Top (3, blue)*: 1.3 mg 2 (2.1 µmol) with 1 eq. DMAH-BF₄ and 1.1 eq. DBU in THF- d_8 . ³¹P{¹H} NMR (202 MHz, THF- d_8): δ = 72.60 (d, *J* = 11.5 Hz, 18%), 70.53 (d, *J* = 11.1 Hz, 42%), 69.00 (br. s, 38%), 67.62 (d, *J* = 12.1 Hz, 6%). Upon deprotonation under Ar, a number of unidentified products are formed. In contrast to deprotonation under N₂ (Figure S10), no 2 is reformed, indicating that N₂ is lost upon protonation with DMAH-BF₄. Integrations are referenced to an internal standard of PMe₃ in a capillary tube.

Fig. S12: ¹H NMR spectrum showing formation of [(PCP)Ir(H)(py)_x]⁺ from reaction of 2a with pyridine-d₅

3.4 mg **2** (5.5 µmol) with 1 eq. DMAH-BF₄ added in THF- d_8 , subsequently spiked with excess (one drop) pyridine- d_5 . ¹H NMR (500 MHz, THF- d_8): $\delta = 6.91$ (d, ³ $J_{H,H} = 7.3$ Hz, 2H, *m*-Ph), 6.55 (t, ³ $J_{H,H} = 7.3$ Hz, 1H, *p*-Ph), 3.17 (m, 4H, CH₂), 1.23 (m, 18H, C(CH₃)₃), 1.07 (m, 18H, C(CH₃)₃), -22.78 (br. s, 1H, Ir-H). While the number of bound pyridine molecules was not confirmed, the relatively downfield hydride resonance is characteristic of a weak donor bound *trans* to the hydride, suggesting a six-coordinate species in the presence of excess pyridine. This matches the reported ¹H NMR spectrum of [(PCP)Ir(H)(THF)]⁺ in excess pyridine.¹ The PMe₃ peak is from the internal standard in a capillary tube.

Fig. S13: ³¹P{¹H} NMR spectrum showing formation of $[(PCP)Ir(H)(py)_x]^+$ from reaction of **2a** with pyridine- d_5

3.4 mg **2** (5.5 μ mol) with 1 eq. DMA-BF₄ added in THF- d_8 , subsequently spiked with excess (one drop) pyridine- d_5 . ³¹P{¹H} NMR (202 MHz, THF- d_8) δ = 46.53 (s). This matches the reported ³¹P NMR spectrum of [(PCP)Ir(H)(THF)]⁺ in excess pyridine.¹ Referenced to PMe₃ in a capillary tube.

Fig. S14: ATR-IR spectra of 2, DMAH-BF₄, and 2a

ATR-IR spectrum of **2** (*red, top*), DMAH-BF₄ (*blue, middle*), and after the addition of 1 eq. DMAH-BF₄ to 3.4 mg **2** (5.5 μ mol) in THF-*d*₈ to form **2a** (*green, bottom*). The bottom spectrum was taken using the crude residue obtained after removing THF-*d*₈ under vacuum. The N-N stretch from **2** is no longer visible, indicating that **2a** does not contain N₂ in the solid state. Loss of the N-H stretch from DMAH-BF₄ confirms proton transfer from the anilinium to the metal complex occurred.

CV of 1.2 mg **1** in 5 mL THF (0.46 mM) with 0.1 M TBA-PF₆ and 1 eq. Fc added (black, solid) taken at 50 mV/s. Upon addition of 1 eq. TFA, an irreversible one-electron reduction occurs at -2.63 V vs. Fc (red, solid). IR compensation was set to 3200 Ω . Control experiments of 1 equiv Fc in THF with 0.1 M TBA-PF₆ without (black, dashed) and with (red, dashed) 1 eq. TFA confirm that this reduction event is dependent on the presence of both **1** and TFA.

Fig. S16: CV of 2 in THF with added equiv TFA

CV of 1.4 mg **2** in 5 mL THF (0.46 mM) with 0.1 M TBA-PF₆ and 1 eq. Fc added (black, solid) taken at 50 mV/s. Upon addition of 1 eq. TFA, an irreversible one-electron reduction occurs at -2.42 V vs. Fc (red, solid), followed by a substoichiometric reversible reduction at -2.88 V vs. Fc. IR compensation was set to 3200 Ω . Control experiments of 1 equiv Fc in THF with 0.1 M TBA-PF₆ without (black, dashed) and with (red, dashed) 1 equiv TFA confirm that these redox events are dependent on the presence of both **2** and TFA.

Fig. S17: CV of 1 in THF with large excess of TFA

CV of 1.2 mg **1** in 5 mL THF (0.46 mM) with 0.1 M TBA-PF₆ and 1 eq. Fc added (*black, solid*) taken at 50 mV/s. Upon addition of 25 eq. TFA, a large irreversible reduction occurs with peak current at -1.93 V vs Fc (*red, solid*) followed by a second reduction at -2.59 V vs Fc. IR compensation was set to 3200 Ω . The large current of the first irreversible reduction upon flooding with acid (compare to 1 equiv TFA in Fig. S15) is characteristic of electrocatalytic proton reduction. Control experiments of 1 eq. Fc with 25 equiv TFA (*red, dashed*) confirm that the catalytic current is dependent on the presence of **1**.

Fig. S18: CV of 2 in THF with large excess of TFA

CV of 1.4 mg **2** in 5 mL THF (0.46 mM) with 0.1 M TBA-PF₆ and 1 eq. Fc added (*black, solid*) taken at 50 mV/s. Upon addition of 25 eq. TFA, a large irreversible reduction occurs with peak current at -2.53 V vs Fc (*red, solid*). IR compensation was set to 3200 Ω . The large current enhancement of this irreversible reduction upon flooding with acid (compare to 1 equiv TFA in Fig. S16) is characteristic of electrocatalytic proton reduction. Control experiments of 1 equiv Fc with 25 equiv TFA (*red, dashed*) confirm that the catalytic current is dependent on the presence of **2**.

Fig. S19: CV of 2 in THF with added DMAH-BF₄

CV of 1.3 mg **2** in 5 mL THF (0.42 mM) with 0.1 M TBA-PF₆ and 1 equiv Fc added (black, solid) taken at 50 mV/s. Upon addition of 1 eq. DMAH-BF₄, an irreversible one-electron reduction occurs at -1.82 V vs. Fc (red, solid), followed by a reversible reduction at -2.89 V vs. Fc. IR compensation was set to 3000 Ω . Control experiments of 1 equiv Fc in THF with 0.1 M TBA-PF₆ without (black, dashed) and with (red, dashed) 1 equiv DMAH-BF₄ confirm that these redox events are dependent on the presence of both **2** and DMAH-BF₄.

Fig. S20: ¹H NMR spectra showing reduction of 2a with CoCp₂^{*}

Bottom (1, maroon): 2.9 mg **2** (4.7 µmol) in THF- d_8 . ¹H NMR (500 MHz, THF- d_8): $\delta = 6.83$ (d, J = 7.4 Hz, 2H), 6.54 (t, J = 7.4 Hz, 1H), 3.25 (m, J = 3.9 Hz, 4H), 1.33 (m, J = 6.4 Hz, 36H). Second (2, light green): 2.9 mg **2** with 1 eq. DMA-BF₄ added in THF- d_8 to form **2a**. *Third (3, blue-green)*: Reduction of **2a** with 1.1 eq. CoCp₂* in THF- d_8 , showing hydride resonances at -9.42 ppm and -19.52 ppm characteristic of (PCP)IrH₄ and (PCP)IrH₂, respectively.^{2, 3} Aromatic resonances at 6.83 ppm (d, J = 7.4 Hz) and 6.54 ppm (t, J = 7.4 H) correspond to **2**. *Top (4, purple)*: ¹H NMR spectrum after one week showing full conversion to **2** and (PCP)IrH₄. The PMe₃ peak is from the internal standard in a capillary tube.

Fig. S21: ¹H NMR spectrum of mixture of (PCP)IrH₂ and (PCP)IrH₄

Mixture of (PCP)IrH₂² and (PCP)IrH₄³ in THF- d_8 , which were prepared according to literature procedures and match reported spectra. The PMe₃ peak is from the internal standard in a capillary tube.

Fig. S22: ³¹P{¹H} NMR spectrum of mixture of (PCP)IrH₂ and (PCP)IrH₄

Mixture of (PCP)IrH₂ and (PCP)IrH₄ in THF- d_8 , which were prepared according to literature procedures and match reported spectra. Referenced to PMe₃ in a capillary tube.

References:

- 1. A. G. Walden. "Oxidative Electrochemistry of Molecular Catalysts." University of North Carolina at Chapel Hill, 2016.
- 2. M. Gupta, C. Hagen, R. J. Flesher, W. C. Kaska and C. M. Jensen, *Chem. Commun.*, 1996, **17**, 2083-2084.
- 3. T. J. Hebden, K. I. Goldberg, D. M. Heinekey, X. Zhang, T. J. Emge, A. S. Goldman and K. Krogh-Jespersen, *Inorg. Chem.*, 2010, **49**, 1733-1742.