Electronic Supplementary Information for:
 Protonation and electrochemical reduction of rhodium- and iridium-dinitrogen complexes in organic solution

G. P. Connor, ${ }^{a}$ N. Lease, ${ }^{b}$ A. Casuras, ${ }^{\text {b }}$ A. S. Goldman, ${ }^{* b}$ P. L Holland ${ }^{* a}$ and J. M. Mayer*a
a Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
${ }^{\mathrm{b}}$ Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, USA

TABLE OF CONTENTS:

Supplementary Data and Spectra 2
Fig. S1: FTIR spectrum of 1 2
Fig. S2: FTIR spectrum of 2 2
Fig. S3: ${ }^{1} \mathrm{H}$ NMR spectra showing protonation of 1 with TFA in THF- d_{8} 3
Fig. S4: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showing protonation of 1 with TFA in THF- d_{8} 4
Fig. S5: ${ }^{19} \mathrm{~F}$ NMR spectra showing protonation of 1 with TFA in THF- d_{8} 5
Fig. S6: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showing protonation of $\mathbf{1}$ with $p \mathrm{CAH}-\mathrm{BF}_{4}$ and deprotonation of $\mathbf{1 b}$ with DBU under N_{2} 6
Fig. S7: ${ }^{31} \mathcal{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showing protonation of $\mathbf{1}$ with $p \mathrm{CAH}-\mathrm{BF}_{4}$ and deprotonation of $\mathbf{1 b}$ with DBU under Ar 7
Fig. S8: VT ${ }^{1} \mathrm{H}$ NMR spectra upon protonation of $\mathbf{2}$ with $\mathrm{DMAH}^{-\mathrm{BF}_{4}}$ to form $\mathbf{2 a}$ 8
Fig. S9: $\mathrm{VT}^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra upon protonation of $\mathbf{2}$ with $\mathrm{DMAH}^{2} \mathrm{BF}_{4}$ to form $\mathbf{2 a}$ 9
Fig. S10: ${ }^{31}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showing deprotonation of 2a with DBU under N_{2} 10
Fig. S11: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showing deprotonation of 2a with DBU under Ar 11
Fig. S12: ${ }^{1} \mathrm{H}$ NMR spectrum showing formation of $\left[(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})(\mathrm{py})_{\mathrm{x}}\right]^{+}$from reaction of $\mathbf{2 a}$ with pyridine- d_{5} 12
Fig. S13: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showing formation of $\left[(\mathrm{PCP}) \operatorname{Ir}(\mathrm{H})(\mathrm{py})_{\mathrm{x}}\right]^{+}$from reaction of 2a with pyridine- d_{5} 13
Fig. S14: ATR-IR spectra of $\mathrm{DMAH}-\mathrm{BF}_{4}$, 2, and $\mathbf{2 a}$ 14
Fig. S15: CV of 1 in THF with added equiv TFA 15
Fig. S16: CV of 2 in THF with added equiv TFA 16
Fig. S17: CV of 1 in THF with large excess of TFA 17
Fig. S18: CV of $\mathbf{2}$ in THF with large excess of TFA 18
Fig. S19: CV of $\mathbf{2}$ in THF with added DMAH-BF 4 19
Fig. S20: ${ }^{1} \mathrm{H}$ NMR spectra showing reduction of $\mathbf{2 a}$ with $\mathrm{CoCp}_{2}{ }^{*}$ 20
Fig. S21: ${ }^{1} \mathrm{H}$ NMR spectrum of mixture of (PCP)IrH ${ }_{2}$ and (PCP)IrH4 21
Fig. S22: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of mixture of (PCP) $1 r \mathrm{H}_{2}$ and (PCP) $1 \mathrm{rH}_{4}$ 22
References 23

Supplementary Data and Spectra:
Fig. S1: FTIR spectrum of 1

Fig. S2: FTIR spectrum of 2

Fig. S3: ${ }^{1} \mathrm{H}$ NMR spectra showing protonation of $\mathbf{1}$ with TFA in THF- d_{8}

Bottom (1, maroon): $1.7 \mathrm{mg} 1(3.2 \mu \mathrm{~mol})$ in THF- $d_{8} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=6.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}\right.$, $2 \mathrm{H}, m-\mathrm{Ph}), 6.59\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}\right), 3.23\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35\left(\mathrm{~m},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=6.2 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) . \operatorname{Top}(2$, teal): 1.7 mg 1 in THF- d_{8} with 1.1 eq. TFA added. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{THF}-d_{8}, 1 \mathrm{a}\right): \delta=6.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3\right.$ $\mathrm{Hz}, 2 \mathrm{H}, m-\mathrm{Ph}), 6.72\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}\right), 3.38-3.13\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32\left(\mathrm{~m},{ }^{2} J_{\mathrm{P}, \mathrm{H}}=6.4 \mathrm{~Hz}, 36 \mathrm{H}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-25.60\left(\mathrm{dt},{ }^{1} J_{\mathrm{Rh}, \mathrm{H}}=45.4,{ }^{2} J_{\mathrm{P}, \mathrm{H}}=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Rh}-H\right)$. The spectrum describes a diamagnetic complex, and the loss of $C_{2 v}$ symmetry is evident from splitting of methylene and ${ }^{t} \mathrm{Bu}$ resonances. A hydride peak is visible at -25.60 ppm . The PMe_{3} peak is from the internal standard in a capillary tube.

Fig. S4: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showing protonation of $\mathbf{1}$ with TFA in THF- d_{8}

Fig. S5: ${ }^{19} \mathrm{~F}$ NMR spectra showing protonation of $\mathbf{1}$ with TFA in THF- d_{8}

Bottom (1, maroon): $3.0 \mu \mathrm{~mol}$ TFA in THF- $d_{8} .{ }^{19} \mathrm{~F}$ NMR (470 MHz, THF- d_{8}): $\delta=-80.67$ (s). Top (2, teal): 3.0 $\mu \mathrm{mol}$ TFA with $1.4 \mathrm{mg} 1(2.7 \mu \mathrm{~mol}, 0.9 \mathrm{eq}$.$) added in THF- d_{8} .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=-79.70(\mathrm{~s})$, 80.28 (br. s).

Fig. S6: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showing protonation of 1 with $p C A H-\mathrm{BF}_{4}$ and deprotonation of $\mathbf{1 b}$ with DBU under N_{2}

989796959493929190898887868584838281807978777675747372717069686766656463 f1 (ppm)

Bottom (1, maroon): 1.2 mg 1 ($2.3 \mu \mathrm{~mol}$) in THF- d_{8} under $\mathrm{N}_{2} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta=81.52$ ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{Rh}}=157.9 \mathrm{~Hz}, 100 \%$). Middle (2, green): 1.2 mg 1 with 1 eq. $p \mathrm{CAH}-\mathrm{BF}_{4}$ in THF- d_{8} under $\mathrm{N}_{2} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$): $\delta=77.83\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{Rh}}=117.4 \mathrm{~Hz}, 90 \%, 1 b\right), 74.81\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{Rh}}=112.7 \mathrm{~Hz}, 10 \%\right) . \operatorname{Top}(3$, blue): 1.2 mg 1 with 1 eq. $p \mathrm{CAH}-\mathrm{BF}_{4}$ and 1.1 eq . DBU in THF- d_{8} under $\mathrm{N}_{2} \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{THF}-d_{8}\right)$: $\delta=81.53\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=157.9 \mathrm{~Hz}, 90 \%\right), 74.80\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=115.2 \mathrm{~Hz}, 10 \%\right)$. Protonation of 1 with $p \mathrm{CAH}-\mathrm{BF}_{4}$ under N_{2} gives $\mathbf{1 b}$, and subsequent addition of DBU reforms complex $\mathbf{1}$ in 90% yield. Integrations are referenced to an internal standard of PMe_{3} in a capillary tube, and yields are rounded to one significant figure.

Fig. S7: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showing protonation of 1 with $p C A H-\mathrm{BF}_{4}$ and deprotonation of $\mathbf{1 b}$ with DBU under Ar

Fig. S8: $\mathrm{VT}^{1} \mathrm{H}$ NMR spectra upon protonation of $\mathbf{2}$ with $\mathrm{DMAH}^{2} \mathrm{BF}_{4}$ to form $\mathbf{2 a}$

Bottom (1, maroon): $3.4 \mathrm{mg} 2(5.5 \mu \mathrm{~mol})$ in THF- $\mathrm{d}_{8} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, \mathbf{2}$): $\delta=6.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.4\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{m}-\mathrm{Ph}), 6.54\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}\right), 3.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33\left(\mathrm{~m},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=6.4 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Second to bottom (2, gold): $3.4 \mathrm{mg} 2\left(5.5 \mu \mathrm{~mol}\right.$) with 1 eq. DMAH-BF ${ }_{4}$ in THF- d_{8} at $25^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 2 \mathrm{a}\right) \delta=6.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Ph}\right), 6.57\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}\right), 3.50-3.15(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.34\left(\mathrm{~m},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{H}}=6.7 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.27-1.15\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. The spectrum describes a diamagnetic complex, and the loss of $C_{2 v}$ symmetry is evident from splitting of methylene and ${ }^{\mathrm{B}} \mathrm{Bu}$ resonances; however, no hydride resonance is resolved at ambient temperature. Third from bottom and upwards ($3-7$, green through plum): $3.4 \mathrm{mg} 2\left(5.5 \mu \mathrm{~mol}\right.$) with 1 eq. DMAH- BF_{4} in $\mathrm{THF}-d_{8}$ at various temperatures. A hydride resonance resolves at low temperatures and is visible at $-40^{\circ} \mathrm{C}$ at $\delta=-36.7$ (br. $\mathrm{s}, 1 \mathrm{H},(\mathrm{r}-\mathrm{H})$.

Fig. S9: $\mathrm{VT}^{31}{ }^{31}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra upon protonation of $\mathbf{2}$ with $\mathrm{DMAH}-\mathrm{BF}_{4}$ to form $\mathbf{2 a}$

Bottom (1, maroon): $3.4 \mathrm{mg} \mathbf{2}(5.5 \mu \mathrm{~mol})$ in THF- $\mathrm{d}_{8} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, \mathbf{2}\right): \delta=72.80$ (s). Second to bottom (2 , gold): 3.4 mg 2 ($5.5 \mu \mathrm{~mol}$) with 1 eq. DMAH-BF ${ }_{4}$ in THF- d_{8} at $25^{\circ} \mathrm{C}$. No phosphorus resonance is visible for the diamagnetic complex described in the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum (see Fig. S8). Third from bottom and upwards ($3-7$, green through plum): $3.4 \mathrm{mg} 2(5.5 \mu \mathrm{~mol}$) with 1 eq. DMAH- BF_{4} in THF- d_{8} at various temperatures. A phosphorus resonance resolves at low temperatures and is visible at $-40^{\circ} \mathrm{C}$ at $\delta=69.15$ (br. s).

Fig. S10: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showing deprotonation of $\mathbf{2 a}$ with DBU under N_{2}

Bottom (1, maroon): $2.8 \mathrm{mg} 2(4.6 \mu \mathrm{~mol})$ in THF- $\mathrm{d}_{8} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, \mathbf{2}$): $\delta=72.80$ (s). Middle (2, green): $2.8 \mathrm{mg} 2(4.6 \mu \mathrm{~mol})$ with 1 eq. DMAH-BF 4 in THF- d_{8}. No phosphorus resonance is visible for the diamagnetic complex 2a at $25{ }^{\circ} \mathrm{C}$ (see Fig. S9). Top (3, blue): 2.8 mg 2 ($4.6 \mu \mathrm{~mol}$) with 1 eq. DMAH- BF_{4} and 1.1 eq. DBU in THF- $d_{8} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=72.80$ (s). 2 is reformed in 97% yield upon deprotonation of $\mathbf{2 a}$ with DBU under N_{2}. Integrations are referenced to an internal standard of PMe_{3} in a capillary tube.

Fig. S11: ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showing deprotonation of 2a with DBU under Ar

Bottom (1, maroon): $1.3 \mathrm{mg} \mathbf{2}(2.1 \mu \mathrm{~mol})$ in THF- $\mathrm{d}_{8} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, \mathbf{2}$): $\delta=72.80$ (s). Middle (2, green): $1.3 \mathrm{mg} 2(2.1 \mu \mathrm{~mol})$ with 1 eq. $\mathrm{DMAH}^{2} \mathrm{BF}_{4}$ in $\mathrm{THF}-d_{8}$. No phosphorus resonance is visible for the diamagnetic complex 2a at $25^{\circ} \mathrm{C}$ (see Fig. S9). Top (3 , blue): $1.3 \mathrm{mg} \mathbf{2}$ ($2.1 \mu \mathrm{~mol}$) with 1 eq. DMAH-BF 4_{4} and 1.1 eq. DBU in THF- $d_{8} .{ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$): $\delta=72.60$ ($\mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, 18 \%$), 70.53 (d, $J=11.1 \mathrm{~Hz}, 42 \%$), 69.00 (br. $s, 38 \%$), 67.62 ($d, J=12.1 \mathrm{~Hz}, 6 \%$). Upon deprotonation under Ar, a number of unidentified products are formed. In contrast to deprotonation under N_{2} (Figure S10), no $\mathbf{2}$ is reformed, indicating that N_{2} is lost upon protonation with $\mathrm{DMAH}^{2}-\mathrm{BF}_{4}$. Integrations are referenced to an internal standard of PMe_{3} in a capillary tube.

Fig. S12: ${ }^{1} \mathrm{H}$ NMR spectrum showing formation of $\left[(P C P) \operatorname{Ir}(H)(p y)_{x}\right]^{+}$from reaction of $\mathbf{2 a}$ with pyridine $-d_{5}$

$3.4 \mathrm{mg} 2(5.5 \mu \mathrm{~mol})$ with 1 eq . DMAH- BF_{4} added in THF- d_{8}, subsequently spiked with excess (one drop) pyridine- $d_{5} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Ph}\right), 6.55\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, p-\right.$ $\mathrm{Ph}), 3.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.23\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.07\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-22.78($ br. $\mathrm{s}, 1 \mathrm{H}, \mathrm{Ir}-\mathrm{H})$. While the number of bound pyridine molecules was not confirmed, the relatively downfield hydride resonance is characteristic of a weak donor bound trans to the hydride, suggesting a six-coordinate species in the presence of excess pyridine. This matches the reported ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})(\mathrm{THF})]^{+}$in excess pyridine. ${ }^{1}$ The PMe_{3} peak is from the internal standard in a capillary tube.

Fig. S13: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showing formation of $\left[(P C P) \mid r(H)(p y)_{x}\right]^{+}$from reaction of $\mathbf{2 a}$ with pyridine- d_{5}

$3.4 \mathrm{mg} 2(5.5 \mu \mathrm{~mol})$ with 1 eq. $\mathrm{DMA}^{2} \mathrm{BF}_{4}$ added in THF- d_{8}, subsequently spiked with excess (one drop) pyridine- $d_{5} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta=46.53(\mathrm{~s})$. This matches the reported ${ }^{31} \mathrm{P}$ NMR spectrum of $[(\mathrm{PCP}) \operatorname{lr}(\mathrm{H})(\mathrm{THF})]^{+}$in excess pyridine. ${ }^{1}$ Referenced to PMe_{3} in a capillary tube.

Fig. S14: ATR-IR spectra of 2, DMAH-BF 4 , and 2a

ATR-IR spectrum of 2 (red, top), DMAH- BF_{4} (blue, middle), and after the addition of 1 eq. $\mathrm{DMAH}^{2}-\mathrm{BF}_{4}$ to $3.4 \mathrm{mg} 2(5.5 \mu \mathrm{~mol})$ in THF- d_{8} to form $\mathbf{2 a}$ (green, bottom). The bottom spectrum was taken using the crude residue obtained after removing THF- d_{8} under vacuum. The $N-N$ stretch from $\mathbf{2}$ is no longer visible, indicating that $\mathbf{2 a}$ does not contain N_{2} in the solid state. Loss of the $\mathrm{N}-\mathrm{H}$ stretch from DMAH-BF 4 confirms proton transfer from the anilinium to the metal complex occurred.

Fig. S15: CV of 1 in THF with added equiv TFA

CV of 1.2 mg 1 in 5 mL THF (0.46 mM) with $0.1 \mathrm{M} \mathrm{TBA-PF}_{6}$ and 1 eq. Fc added (black, solid) taken at $50 ~(1) ~$ mV / s. Upon addition of 1 eq . TFA, an irreversible one-electron reduction occurs at -2.63 V vs . Fc (red, solid). IR compensation was set to 3200Ω. Control experiments of 1 equiv Fc in THF with $0.1 \mathrm{M} \mathrm{TBA-PF}_{6}$ without (black, dashed) and with (red, dashed) 1 eq. TFA confirm that this reduction event is dependent on the presence of both 1 and TFA.

Fig. S16: CV of $\mathbf{2}$ in THF with added equiv TFA

CV of $1.4 \mathrm{mg} \mathbf{2}$ in 5 mL THF (0.46 mM) with $0.1 \mathrm{M} \mathrm{TBA-PF}_{6}$ and 1 eq . Fc added (black, solid) taken at $50 ~$ mV / s. Upon addition of 1 eq. TFA, an irreversible one-electron reduction occurs at -2.42 V vs . Fc (red, solid), followed by a substoichiometric reversible reduction at -2.88 V vs. Fc. IR compensation was set to 3200Ω. Control experiments of 1 equiv Fc in THF with $0.1 \mathrm{M} \mathrm{TBA-PF} 6$ without (black, dashed) and with (red, dashed) 1 equiv TFA confirm that these redox events are dependent on the presence of both $\mathbf{2}$ and TFA.

Fig. S17: CV of 1 in THF with large excess of TFA

CV of 1.2 mg 1 in 5 mL THF (0.46 mM) with $0.1 \mathrm{M} \mathrm{TBA-PF}$ and 1 eq . Fc added (black, solid) taken at 50 mV / s. Upon addition of 25 eq . TFA, a large irreversible reduction occurs with peak current at -1.93 V vs Fc (red, solid) followed by a second reduction at -2.59 V vs Fc. IR compensation was set to 3200Ω. The large current of the first irreversible reduction upon flooding with acid (compare to 1 equiv TFA in Fig. S 15) is characteristic of electrocatalytic proton reduction. Control experiments of 1 eq . Fc with 25 equiv TFA (red, dashed) confirm that the catalytic current is dependent on the presence of 1.

Fig. S18: CV of $\mathbf{2}$ in THF with large excess of TFA

CV of 1.4 mg 2 in 5 mL THF (0.46 mM) with $0.1 \mathrm{M} \mathrm{TBA-PF}_{6}$ and 1 eq. Fc added (black, solid) taken at $50 ~(1) ~$ mV / s. Upon addition of 25 eq . TFA, a large irreversible reduction occurs with peak current at -2.53 V vs Fc (red, solid). IR compensation was set to 3200Ω. The large current enhancement of this irreversible reduction upon flooding with acid (compare to 1 equiv TFA in Fig. S16) is characteristic of electrocatalytic proton reduction. Control experiments of 1 equiv Fc with 25 equiv TFA (red, dashed) confirm that the catalytic current is dependent on the presence of $\mathbf{2}$.

Fig. S19: CV of $\mathbf{2}$ in THF with added $\mathrm{DMAH}^{-\mathrm{BF}_{4}}$

CV of 1.3 mg 2 in 5 mL THF (0.42 mM) with $0.1 \mathrm{M} \mathrm{TBA-PF}_{6}$ and 1 equiv Fc added (black, solid) taken at $50 ~$ mV / s. Upon addition of 1 eq. $\mathrm{DMAH}^{2} \mathrm{BF}_{4}$, an irreversible one-electron reduction occurs at -1.82 V vs. Fc (red, solid), followed by a reversible reduction at -2.89 V vs. Fc. IR compensation was set to 3000Ω. Control experiments of 1 equiv Fc in THF with $0.1 \mathrm{M} \mathrm{TBA}-\mathrm{PF}_{6}$ without (black, dashed) and with (red,
 and DMAH-BF ${ }_{4}$.

Fig. S20: ${ }^{1} \mathrm{H}$ NMR spectra showing reduction of 2a with $\mathrm{CoCp}_{2}{ }^{*}$

Bottom (1, maroon): $2.9 \mathrm{mg} 2(4.7 \mu \mathrm{~mol})$ in THF- $d_{8} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta=6.83(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.54(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~m}, J=3.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.33(\mathrm{~m}, J=6.4 \mathrm{~Hz}, 36 \mathrm{H})$. Second (2, light green): 2.9 mg 2 with 1 eq. $\mathrm{DMA}^{2} \mathrm{BF}_{4}$ added in $\mathrm{THF}-d_{8}$ to form 2a. Third (3, blue-green): Reduction of 2 a with 1.1 eq. $\mathrm{CoCp}_{2}{ }^{*}$ in THF- d_{8}, showing hydride resonances at -9.42 ppm and -19.52 ppm characteristic of (PCP)IrH ${ }_{4}$ and (PCP) IrH_{2}, respectively. ${ }^{2,3}$ Aromatic resonances at $6.83 \mathrm{ppm}(\mathrm{d}, J=7.4 \mathrm{~Hz}$) and $6.54 \mathrm{ppm}(\mathrm{t}, J=7.4 \mathrm{H})$ correspond to 2. Top (4, purple): ${ }^{1} \mathrm{H}$ NMR spectrum after one week showing full conversion to $\mathbf{2}$ and (PCP) $1 \mathrm{rH}_{4}$. The PMe_{3} peak is from the internal standard in a capillary tube.

Fig. S21: ${ }^{1} \mathrm{H}$ NMR spectrum of mixture of $(P C P) \mid r \mathrm{H}_{2}$ and (PCP) $\mid \mathrm{IH}_{4}$

Mixture of (PCP) $1 \mathrm{rH}_{2}{ }^{2}$ and (PCP) $1 \mathrm{rH}_{4}{ }^{3}$ in $\mathrm{THF}^{2} d_{8}$, which were prepared according to literature procedures and match reported spectra. The PMe_{3} peak is from the internal standard in a capillary tube.

Fig. S22: ${ }^{31}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of mixture of (PCP)|rH ${ }_{2}$ and (PCP)|rH ${ }_{4}$

Mixture of (PCP) $1 \mathrm{rH} \mathrm{H}_{2}$ and (PCP) IrH_{4} in $\mathrm{THF}-d_{8}$, which were prepared according to literature procedures and match reported spectra. Referenced to PMe_{3} in a capillary tube.

References:

1. A. G. Walden. "Oxidative Electrochemistry of Molecular Catalysts." University of North Carolina at Chapel Hill, 2016.
2. M. Gupta, C. Hagen, R. J. Flesher, W. C. Kaska and C. M. Jensen, Chem. Commun., 1996, 17, 2083-2084.
3. T. J. Hebden, K. I. Goldberg, D. M. Heinekey, X. Zhang, T. J. Emge, A. S. Goldman and K. KroghJespersen, Inorg. Chem., 2010, 49, 1733-1742.
