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Supplementary Data and Spectra:

Fig. S1: FTIR spectrum of 1
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Fig. S3: 'H NMR spectra showing protonation of 1 with TFA in THF-dj
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Bottom (1, maroon): 1.7 mg 1 (3.2 pmol) in THF-dg. *H NMR (500 MHz, THF-dg): & = 6.80 (d, 3/y 4 = 7.3 Hz,
2H, m-Ph), 6.59 (t, 3Jy = 7.3 Hz, 1H, p-Ph), 3.23 (m, 4H, CH,), 1.35 (m, 2Jp 4y = 6.2 Hz, 36H, C(CHs)3). Top (2,
teal): 1.7 mg 1 in THF-dg with 1.1 eq. TFA added. *H NMR (500 MHz, THF-ds, 1a): 6 =6.85 (d, 3,y = 7.3
Hz, 2H, m-Ph), 6.72 (t, 3Jy 4 = 7.3 Hz, 1H, p-Ph), 3.38 —3.13 (m, 4H, CH,), 1.32 (m, 2Jp 4 = 6.4 Hz, 36H,
C(CHs)3), -25.60 (dt, Wryn = 45.4, 2p 4 = 11.8 Hz, 1H, Rh-H). The spectrum describes a diamagnetic
complex, and the loss of C,, symmetry is evident from splitting of methylene and !Bu resonances. A
hydride peak is visible at -25.60 ppm. The PMe; peak is from the internal standard in a capillary tube.



Fig. S4: 3'P{*H} NMR spectra showing protonation of 1 with TFA in THF-ds
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Bottom (1, maroon): 1.7 mg 1 (3.2 pmol) in THF-ds. 31P{*H} NMR (162 MHz, THF-dg): 6 = 81.48 (d, Yprn =
158.2 Hz). Top (2, teal): 1.7 mg 1 in THF-dg with 1.1 eq. TFA added. 3'P{*H} NMR (202 MHz, THF-dg): § =
77.61 (dd, Yp pn = 116.4 Hz, 2Jp = 6.8 Hz, 1a). Referenced to PMe;s in a capillary tube.



Fig. S5: 1°F NMR spectra showing protonation of 1 with TFA in THF-dg
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Bottom (1, maroon): 3.0 umol TFA in THF-ds. 1°F NMR (470 MHz, THF-dg): 6 =-80.67 (s). Top (2, teal): 3.0
pmol TFA with 1.4 mg 1 (2.7 umol, 0.9 eq.) added in THF-ds. 1°F NMR (470 MHz, THF-dg): & =-79.70 (s), -
80.28 (br. s).



Fig. S6: 3'P{*H} NMR spectra showing protonation of 1 with pCAH-BF, and deprotonation of 1b with DBU
under N,
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Bottom (1, maroon): 1.2 mg 1 (2.3 pumol) in THF-dg under N,. 3'P{*H} NMR (202 MHz, THF-d;): 6 = 81.52
(d, Yprn = 157.9 Hz, 100%). Middle (2, green): 1.2 mg 1 with 1 eq. pCAH-BF, in THF-dg under N,. 31P{H}
NMR (202 MHz, THF-dg): 6 = 77.83 (d, Wprn = 117.4 Hz, 90%, 1b), 74.81 (d, Yp gy = 112.7 Hz, 10%). Top (3,
blue): 1.2 mg 1 with 1 eq. pCAH-BF, and 1.1 eq. DBU in THF-dg under N,. 3'P{*H} NMR (202 MHz, THF-d3):
6 =81.53 (d, Yprn = 157.9 Hz, 90%), 74.80 (d, Yp rn = 115.2 Hz, 10%). Protonation of 1 with pCAH-BF,
under N, gives 1b, and subsequent addition of DBU reforms complex 1 in 90% yield. Integrations are

referenced to an internal standard of PMe; in a capillary tube, and yields are rounded to one significant
figure.



Fig. S7: 3'P{*H} NMR spectra showing protonation of 1 with pCAH-BF, and deprotonation of 1b with DBU
under Ar
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Bottom (1, maroon): 1.3 mg 1 (2.5 pumol) in THF-dg under Ar. 3'P{*H} NMR (202 MHz, THF-dg): 6 = 81.52
(d, Yprn = 158.0 Hz, 100%). Middle (2, green): 1.3 mg 1 with 1 eq. pCAH-BF, in THF-dg under Ar. 31P{*H}
NMR (202 MHz, THF-dg): & = 81.52 (d, Up g, = 157.7 Hz, 10%), 77.82 (br. d, YUprn = 121.2 Hz, 70%, 1b),
75.45 (d, YUp gy = 120.6 Hz, 20%). Top (3, blue): 1.3 mg 1 with 1 eq. pCAH-BF, and 1.1 eq. DBU in THF-ds
under Ar. 31P{H} NMR (202 MHz, THF-dg): 6 = 93.25 (d, Yp g = 154.0 Hz, 10%), 81.54 (d, YUp gy = 159.7 Hz,
20%), 74.80 (d, Ypgn = 115.0 Hz, 10%), 74.28 (d, Yp gy = 178.3 Hz, 70%). Integrations are referenced to an
internal standard of PMe; in a capillary tube, and yields are rounded to one significant figure.



Fig. S8: VT 'H NMR spectra upon protonation of 2 with DMAH-BF, to form 2a
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Bottom (1, maroon): 3.4 mg 2 (5.5 pmol) in THF-dg. *H NMR (500 MHz, THF-dg, 2): 6 =6.83 (d, 3,y = 7.4
Hz, 2H, m-Ph), 6.54 (t, 3Jy 4 = 7.4 Hz, 1H, p-Ph), 3.25 (m, 4H, CH,), 1.33 (M, 2,4 = 6.4 Hz, 36H, C(CH)3).
Second to bottom (2, gold): 3.4 mg 2 (5.5 umol) with 1 eq. DMAH-BF, in THF-dg at 25 °C. *H NMR (500
MHz, THF-ds, 2a) & = 6.75 (d, 3y 4 = 7.5 Hz, 2H, m-Ph), 6.57 (t, 3Jy 4 = 7.5 Hz, 1H, p-Ph), 3.50 — 3.15 (m, 4H,
CH,), 1.34 (m, 2Jp ; = 6.7 Hz, 18H, C(CHs)3), 1.27 — 1.15 (m, 18H, C(CHs)3). The spectrum describes a
diamagnetic complex, and the loss of C,, symmetry is evident from splitting of methylene and ‘Bu
resonances; however, no hydride resonance is resolved at ambient temperature. Third from bottom and
upwards (3-7, green through plum): 3.4 mg 2 (5.5 pumol) with 1 eq. DMAH-BF, in THF-d; at various
temperatures. A hydride resonance resolves at low temperatures and is visible at -40 °C at 6 = -36.7 (br.

s, 1H, Ir-H).



Fig. S9: VT 31P{1H} NMR spectra upon protonation of 2 with DMAH-BF, to form 2a
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Bottom (1, maroon): 3.4 mg 2 (5.5 pumol) in THF-dg. 3'P{*H} NMR (202 MHz, THF-dg, 2): 6 = 72.80 (s).
Second to bottom (2, gold): 3.4 mg 2 (5.5 umol) with 1 eq. DMAH-BF, in THF-dg at 25 °C. No phosphorus
resonance is visible for the diamagnetic complex described in the corresponding *H NMR spectrum (see
Fig. S8). Third from bottom and upwards (3-7, green through plum): 3.4 mg 2 (5.5 umol) with 1 eq.
DMAH-BF, in THF-dg at various temperatures. A phosphorus resonance resolves at low temperatures
and is visible at -40 °C at 6 = 69.15 (br. s).



Fig. S10: 3'P{*H} NMR spectra showing deprotonation of 2a with DBU under N,
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Bottom (1, maroon): 2.8 mg 2 (4.6 umol) in THF-dg. 3'P{*H} NMR (202 MHz, THF-dg, 2): 6 = 72.80 (s).
Middle (2, green): 2.8 mg 2 (4.6 pumol) with 1 eq. DMAH-BF, in THF-ds. No phosphorus resonance is
visible for the diamagnetic complex 2a at 25 °C (see Fig. S9). Top (3, blue): 2.8 mg 2 (4.6 umol) with 1 eq.
DMAH-BF, and 1.1 eq. DBU in THF-d;. 3'P{*H} NMR (202 MHz, THF-d3): 6 = 72.80 (s). 2 is reformed in
97% vyield upon deprotonation of 2a with DBU under N,. Integrations are referenced to an internal
standard of PMe; in a capillary tube.
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Fig. S11: 3'P{*H} NMR spectra showing deprotonation of 2a with DBU under Ar
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Bottom (1, maroon): 1.3 mg 2 (2.1 umol) in THF-ds. 3'P{*H} NMR (202 MHz, THF-dg, 2): 6 = 72.80 (s).
Middle (2, green): 1.3 mg 2 (2.1 pumol) with 1 eq. DMAH-BF, in THF-ds;. No phosphorus resonance is
visible for the diamagnetic complex 2a at 25 °C (see Fig. S9). Top (3, blue): 1.3 mg 2 (2.1 umol) with 1 eq.
DMAH-BF, and 1.1 eq. DBU in THF-dg. 3'P{*H} NMR (202 MHz, THF-dg): 6 = 72.60 (d, J = 11.5 Hz, 18%),
70.53 (d, J=11.1 Hz, 42%), 69.00 (br. s, 38%), 67.62 (d, J = 12.1 Hz, 6%). Upon deprotonation under Ar, a
number of unidentified products are formed. In contrast to deprotonation under N, (Figure S10), no 2 is
reformed, indicating that N, is lost upon protonation with DMAH-BF,. Integrations are referenced to an
internal standard of PMe; in a capillary tube.
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Fig. S12: 'H NMR spectrum showing formation of [(PCP)Ir(H)(py),]* from reaction of 2a with pyridine-ds
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3.4 mg 2 (5.5 umol) with 1 eq. DMAH-BF, added in THF-dg, subsequently spiked with excess (one drop)
pyridine-ds. *H NMR (500 MHz, THF-dg): 6 = 6.91 (d, 3J,;,y = 7.3 Hz, 2H, m-Ph), 6.55 (t, 3y 4 = 7.3 Hz, 1H, p-
Ph), 3.17 (m, 4H, CH,), 1.23 (m, 18H, C(CHs)s), 1.07 (m, 18H, C(CHs)s), -22.78 (br. s, 1H, Ir-H). While the
number of bound pyridine molecules was not confirmed, the relatively downfield hydride resonance is
characteristic of a weak donor bound trans to the hydride, suggesting a six-coordinate species in the
presence of excess pyridine. This matches the reported *H NMR spectrum of [(PCP)Ir(H)(THF)]* in excess
pyridine.! The PMe; peak is from the internal standard in a capillary tube.
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Fig. S13:3P{*"H} NMR spectrum showing formation of [(PCP)Ir(H)(py)]* from reaction of 2a with
pyridine-ds
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3.4 mg 2 (5.5 umol) with 1 eq. DMA-BF, added in THF-ds, subsequently spiked with excess (one drop)
pyridine-ds. 31P{*H} NMR (202 MHz, THF-dg) 6 = 46.53 (s). This matches the reported 3P NMR spectrum
of [(PCP)Ir(H)(THF)]* in excess pyridine.! Referenced to PMej in a capillary tube.
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Fig. S14: ATR-IR spectra of 2, DMAH-BF,, and 2a
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ATR-IR spectrum of 2 (red, top), DMAH-BF, (blue, middle), and after the addition of 1 eq. DMAH-BF, to
3.4 mg 2 (5.5 umol) in THF-d; to form 2a (green, bottom). The bottom spectrum was taken using the
crude residue obtained after removing THF-dg under vacuum. The N-N stretch from 2 is no longer visible,
indicating that 2a does not contain N, in the solid state. Loss of the N-H stretch from DMAH-BF,
confirms proton transfer from the anilinium to the metal complex occurred.
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Fig. $15: CV of 1 in THF with added equiv TFA
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CVof1.2mg1in5mLTHF (0.46 mM) with 0.1 M TBA-PFs and 1 eq. Fc added (black, solid) taken at 50
mV/s. Upon addition of 1 eq. TFA, an irreversible one-electron reduction occurs at -2.63 V vs. Fc (red,
solid). IR compensation was set to 3200 Q. Control experiments of 1 equiv Fc in THF with 0.1 M TBA-PFg
without (black, dashed) and with (red, dashed) 1 eq. TFA confirm that this reduction event is dependent
on the presence of both 1 and TFA.
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Fig. $16: CV of 2 in THF with added equiv TFA
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CVof 1.4 mg 2in 5 mL THF (0.46 mM) with 0.1 M TBA-PFs and 1 eq. Fc added (black, solid) taken at 50
mV/s. Upon addition of 1 eq. TFA, an irreversible one-electron reduction occurs at -2.42 V vs. Fc (red,
solid), followed by a substoichiometric reversible reduction at -2.88 V vs. Fc. IR compensation was set to
3200 Q. Control experiments of 1 equiv Fc in THF with 0.1 M TBA-PF¢ without (black, dashed) and with

(red, dashed) 1 equiv TFA confirm that these redox events are dependent on the presence of both 2 and
TFA.
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Fig. S17: CV of 1 in THF with large excess of TFA
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CVof1.2mg1in5 mLTHF (0.46 mM) with 0.1 M TBA-PF¢ and 1 eq. Fc added (black, solid) taken at 50
mV/s. Upon addition of 25 eq. TFA, a large irreversible reduction occurs with peak current at -1.93 V vs
Fc (red, solid) followed by a second reduction at -2.59 V vs Fc. IR compensation was set to 3200 Q. The
large current of the first irreversible reduction upon flooding with acid (compare to 1 equiv TFA in Fig.
S15) is characteristic of electrocatalytic proton reduction. Control experiments of 1 eq. Fc with 25 equiv
TFA (red, dashed) confirm that the catalytic current is dependent on the presence of 1.
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Fig. $18: CV of 2 in THF with large excess of TFA
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CVof 1.4 mg 2 in 5 mL THF (0.46 mM) with 0.1 M TBA-PF¢ and 1 eq. Fc added (black, solid) taken at 50
mV/s. Upon addition of 25 eq. TFA, a large irreversible reduction occurs with peak current at -2.53 V vs
Fc (red, solid). IR compensation was set to 3200 Q. The large current enhancement of this irreversible
reduction upon flooding with acid (compare to 1 equiv TFA in Fig. S16) is characteristic of
electrocatalytic proton reduction. Control experiments of 1 equiv Fc with 25 equiv TFA (red, dashed)
confirm that the catalytic current is dependent on the presence of 2.
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Fig. S19: CV of 2 in THF with added DMAH-BF,
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CVof 1.3 mg 2in 5 mL THF (0.42 mM) with 0.1 M TBA-PFs and 1 equiv Fc added (black, solid) taken at 50
mV/s. Upon addition of 1 eq. DMAH-BF,, an irreversible one-electron reduction occurs at -1.82 V vs. Fc
(red, solid), followed by a reversible reduction at -2.89 V vs. Fc. IR compensation was set to 3000 Q.
Control experiments of 1 equiv Fc in THF with 0.1 M TBA-PF; without (black, dashed) and with (red,
dashed) 1 equiv DMAH-BF, confirm that these redox events are dependent on the presence of both 2
and DMAH-BF,.
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Fig. $20: 'H NMR spectra showing reduction of 2a with CoCp,"
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Bottom (1, maroon): 2.9 mg 2 (4.7 umol) in THF-dg. *H NMR (500 MHz, THF-dg): 6 =6.83 (d, J = 7.4 Hz,
2H), 6.54 (t, J= 7.4 Hz, 1H), 3.25 (m, J = 3.9 Hz, 4H), 1.33 (m, J = 6.4 Hz, 36H). Second (2, light green): 2.9
mg 2 with 1 eq. DMA-BF, added in THF-ds to form 2a. Third (3, blue-green): Reduction of 2a with 1.1 eq.
CoCp," in THF-ds, showing hydride resonances at -9.42 ppm and -19.52 ppm characteristic of (PCP)IrH,
and (PCP)IrH,, respectively.? 3 Aromatic resonances at 6.83 ppm (d, J = 7.4 Hz) and 6.54 ppm (t, /= 7.4 H)
correspond to 2. Top (4, purple): *H NMR spectrum after one week showing full conversion to 2 and
(PCP)IrH,. The PMe; peak is from the internal standard in a capillary tube.
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Fig. S21: 'H NMR spectrum of mixture of (PCP)IrH, and (PCP)IrH,
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Mixture of (PCP)IrH,? and (PCP)IrH,3in THF-ds, which were prepared according to literature procedures
and match reported spectra. The PMe; peak is from the internal standard in a capillary tube.
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Fig. S22: 31P{*H} NMR spectrum of mixture of (PCP)IrH, and (PCP)IrH,
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Mixture of (PCP)IrH, and (PCP)IrH,in THF-ds, which were prepared according to literature procedures
and match reported spectra. Referenced to PMe; in a capillary tube.
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