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Supplementary Data and Spectra:

Fig. S1: FTIR spectrum of 1

Fig. S2: FTIR spectrum of 2
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Fig. S3: 1H NMR spectra showing protonation of 1 with TFA in THF-d8

Bottom (1, maroon): 1.7 mg 1 (3.2 µmol) in THF-d8. 1H NMR (500 MHz, THF-d8): δ = 6.80 (d, 3JH,H = 7.3 Hz, 
2H, m-Ph), 6.59 (t, 3JH,H = 7.3 Hz, 1H, p-Ph), 3.23 (m, 4H, CH2), 1.35 (m, 2JP,H = 6.2 Hz, 36H, C(CH3)3). Top (2, 
teal): 1.7 mg 1 in THF-d8 with 1.1 eq. TFA added. 1H NMR (500 MHz, THF-d8, 1a): δ = 6.85 (d, 3JH,H = 7.3 
Hz, 2H, m-Ph), 6.72 (t, 3JH,H = 7.3 Hz, 1H, p-Ph), 3.38 – 3.13 (m, 4H, CH2), 1.32 (m, 2JP,H = 6.4 Hz, 36H, 
C(CH3)3), -25.60 (dt, 1JRh,H = 45.4, 2JP,H = 11.8 Hz, 1H, Rh-H). The spectrum describes a diamagnetic 
complex, and the loss of C2v symmetry is evident from splitting of methylene and tBu resonances. A 
hydride peak is visible at -25.60 ppm. The PMe3 peak is from the internal standard in a capillary tube.
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Fig. S4: 31P{1H} NMR spectra showing protonation of 1 with TFA in THF-d8

Bottom (1, maroon): 1.7 mg 1 (3.2 µmol) in THF-d8. 31P{1H} NMR (162 MHz, THF-d8): δ = 81.48 (d, 1JP,Rh = 
158.2 Hz). Top (2, teal): 1.7 mg 1 in THF-d8 with 1.1 eq. TFA added. 31P{1H} NMR (202 MHz, THF-d8): δ = 
77.61 (dd, 1JP,Rh = 116.4 Hz, 2JP,H = 6.8 Hz, 1a). Referenced to PMe3 in a capillary tube.
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Fig. S5: 19F NMR spectra showing protonation of 1 with TFA in THF-d8

Bottom (1, maroon): 3.0 µmol TFA in THF-d8. 19F NMR (470 MHz, THF-d8): δ = -80.67 (s). Top (2, teal): 3.0 
µmol TFA with 1.4 mg 1 (2.7 µmol, 0.9 eq.) added in THF-d8. 19F NMR (470 MHz, THF-d8): δ = -79.70 (s), -
80.28 (br. s).
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Fig. S6: 31P{1H} NMR spectra showing protonation of 1 with pCAH-BF4 and deprotonation of 1b with DBU 
under N2

Bottom (1, maroon): 1.2 mg 1 (2.3 µmol) in THF-d8 under N2. 31P{1H} NMR (202 MHz, THF-d8): δ = 81.52 
(d, 1JP,Rh = 157.9 Hz, 100%). Middle (2, green): 1.2 mg 1 with 1 eq. pCAH-BF4 in THF-d8 under N2. 31P{1H} 
NMR (202 MHz, THF-d8): δ = 77.83 (d, 1JP,Rh = 117.4 Hz, 90%, 1b), 74.81 (d, 1JP,Rh = 112.7 Hz, 10%). Top (3, 
blue): 1.2 mg 1 with 1 eq. pCAH-BF4 and 1.1 eq. DBU in THF-d8 under N2. 31P{1H} NMR (202 MHz, THF-d8): 
δ = 81.53 (d, 1JP,Rh = 157.9 Hz, 90%), 74.80 (d, 1JP,Rh = 115.2 Hz, 10%). Protonation of 1 with pCAH-BF4 
under N2 gives 1b, and subsequent addition of DBU reforms complex 1 in 90% yield. Integrations are 
referenced to an internal standard of PMe3 in a capillary tube, and yields are rounded to one significant 
figure.
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Fig. S7: 31P{1H} NMR spectra showing protonation of 1 with pCAH-BF4 and deprotonation of 1b with DBU 
under Ar

Bottom (1, maroon): 1.3 mg 1 (2.5 µmol) in THF-d8 under Ar. 31P{1H} NMR (202 MHz, THF-d8): δ = 81.52 
(d, 1JP,Rh = 158.0 Hz, 100%). Middle (2, green): 1.3 mg 1 with 1 eq. pCAH-BF4 in THF-d8 under Ar. 31P{1H} 
NMR (202 MHz, THF-d8): δ = 81.52 (d, 1JP,Rh = 157.7 Hz, 10%), 77.82 (br. d, 1JP,Rh = 121.2 Hz, 70%, 1b), 
75.45 (d, 1JP,Rh = 120.6 Hz, 20%). Top (3, blue): 1.3 mg 1 with 1 eq. pCAH-BF4 and 1.1 eq. DBU in THF-d8 
under Ar. 31P{1H} NMR (202 MHz, THF-d8): δ = 93.25 (d, 1JP,Rh = 154.0 Hz, 10%), 81.54 (d, 1JP,Rh = 159.7 Hz, 
20%), 74.80 (d, 1JP,Rh = 115.0 Hz, 10%), 74.28 (d, 1JP,Rh = 178.3 Hz, 70%). Integrations are referenced to an 
internal standard of PMe3 in a capillary tube, and yields are rounded to one significant figure.
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Fig. S8: VT 1H NMR spectra upon protonation of 2 with DMAH-BF4 to form 2a

Bottom (1, maroon): 3.4 mg 2 (5.5 µmol) in THF-d8. 1H NMR (500 MHz, THF-d8, 2): δ = 6.83 (d, 3JH,H = 7.4 
Hz, 2H, m-Ph), 6.54 (t, 3JH,H = 7.4 Hz, 1H, p-Ph), 3.25 (m, 4H, CH2), 1.33 (m, 2JP,H = 6.4 Hz, 36H, C(CH3)3). 
Second to bottom (2, gold): 3.4 mg 2 (5.5 µmol) with 1 eq. DMAH-BF4 in THF-d8 at 25 °C. 1H NMR (500 
MHz, THF-d8, 2a) δ = 6.75 (d, 3JH,H = 7.5 Hz, 2H, m-Ph), 6.57 (t, 3JH,H = 7.5 Hz, 1H, p-Ph), 3.50 – 3.15 (m, 4H, 
CH2), 1.34 (m, 2JP,H = 6.7 Hz, 18H, C(CH3)3), 1.27 – 1.15 (m, 18H, C(CH3)3). The spectrum describes a 
diamagnetic complex, and the loss of C2v symmetry is evident from splitting of methylene and tBu 
resonances; however, no hydride resonance is resolved at ambient temperature. Third from bottom and 
upwards (3-7, green through plum): 3.4 mg 2 (5.5 µmol) with 1 eq. DMAH-BF4 in THF-d8 at various 
temperatures. A hydride resonance resolves at low temperatures and is visible at -40 °C at δ = -36.7 (br. 
s, 1H, Ir-H). 
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Fig. S9: VT 31P{1H} NMR spectra upon protonation of 2 with DMAH-BF4 to form 2a

Bottom (1, maroon): 3.4 mg 2 (5.5 µmol) in THF-d8. 31P{1H} NMR (202 MHz, THF-d8, 2): δ = 72.80 (s). 
Second to bottom (2, gold): 3.4 mg 2 (5.5 µmol) with 1 eq. DMAH-BF4 in THF-d8 at 25 °C. No phosphorus 
resonance is visible for the diamagnetic complex described in the corresponding 1H NMR spectrum (see 
Fig. S8). Third from bottom and upwards (3-7, green through plum): 3.4 mg 2 (5.5 µmol) with 1 eq. 
DMAH-BF4 in THF-d8 at various temperatures. A phosphorus resonance resolves at low temperatures 
and is visible at -40 °C at δ = 69.15 (br. s). 
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Fig. S10: 31P{1H} NMR spectra showing deprotonation of 2a with DBU under N2

Bottom (1, maroon): 2.8 mg 2 (4.6 µmol) in THF-d8.  31P{1H} NMR (202 MHz, THF-d8, 2): δ = 72.80 (s). 
Middle (2, green): 2.8 mg 2 (4.6 µmol) with 1 eq. DMAH-BF4 in THF-d8. No phosphorus resonance is 
visible for the diamagnetic complex 2a at 25 °C (see Fig. S9). Top (3, blue): 2.8 mg 2 (4.6 µmol) with 1 eq. 
DMAH-BF4 and 1.1 eq. DBU in THF-d8. 31P{1H} NMR (202 MHz, THF-d8): δ = 72.80 (s).  2 is reformed in 
97% yield upon deprotonation of 2a with DBU under N2. Integrations are referenced to an internal 
standard of PMe3 in a capillary tube.
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Fig. S11: 31P{1H} NMR spectra showing deprotonation of 2a with DBU under Ar

Bottom (1, maroon): 1.3 mg 2 (2.1 µmol) in THF-d8.  31P{1H} NMR (202 MHz, THF-d8, 2): δ = 72.80 (s). 
Middle (2, green): 1.3 mg 2 (2.1 µmol) with 1 eq. DMAH-BF4 in THF-d8. No phosphorus resonance is 
visible for the diamagnetic complex 2a at 25 °C (see Fig. S9). Top (3, blue): 1.3 mg 2 (2.1 µmol) with 1 eq. 
DMAH-BF4 and 1.1 eq. DBU in THF-d8. 31P{1H} NMR (202 MHz, THF-d8): δ = 72.60 (d, J = 11.5 Hz, 18%), 
70.53 (d, J = 11.1 Hz, 42%), 69.00 (br. s, 38%), 67.62 (d, J = 12.1 Hz, 6%). Upon deprotonation under Ar, a 
number of unidentified products are formed. In contrast to deprotonation under N2 (Figure S10), no 2 is 
reformed, indicating that N2 is lost upon protonation with DMAH-BF4. Integrations are referenced to an 
internal standard of PMe3 in a capillary tube.
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Fig. S12: 1H NMR spectrum showing formation of [(PCP)Ir(H)(py)x]+ from reaction of 2a with pyridine-d5

3.4 mg 2 (5.5 µmol) with 1 eq. DMAH-BF4 added in THF-d8, subsequently spiked with excess (one drop) 
pyridine-d5. 1H NMR (500 MHz, THF-d8): δ = 6.91 (d, 3JH,H = 7.3 Hz, 2H, m-Ph), 6.55 (t, 3JH,H = 7.3 Hz, 1H, p-
Ph), 3.17 (m, 4H, CH2), 1.23 (m, 18H, C(CH3)3), 1.07 (m, 18H, C(CH3)3), -22.78 (br. s, 1H, Ir-H). While the 
number of bound pyridine molecules was not confirmed, the relatively downfield hydride resonance is 
characteristic of a weak donor bound trans to the hydride, suggesting a six-coordinate species in the 
presence of excess pyridine. This matches the reported 1H NMR spectrum of [(PCP)Ir(H)(THF)]+ in excess 
pyridine.1 The PMe3 peak is from the internal standard in a capillary tube.
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Fig. S13: 31P{1H} NMR spectrum showing formation of [(PCP)Ir(H)(py)x]+ from reaction of 2a with 
pyridine-d5

3.4 mg 2 (5.5 µmol) with 1 eq. DMA-BF4 added in THF-d8, subsequently spiked with excess (one drop) 
pyridine-d5. 31P{1H} NMR (202 MHz, THF-d8) δ = 46.53 (s). This matches the reported 31P NMR spectrum 
of [(PCP)Ir(H)(THF)]+ in excess pyridine.1

 Referenced to PMe3 in a capillary tube.



14

Fig. S14: ATR-IR spectra of 2, DMAH-BF4, and 2a

ATR-IR spectrum of 2 (red, top), DMAH-BF4 (blue, middle), and after the addition of 1 eq. DMAH-BF4 to 
3.4 mg 2 (5.5 µmol) in THF-d8 to form 2a (green, bottom). The bottom spectrum was taken using the 
crude residue obtained after removing THF-d8 under vacuum. The N-N stretch from 2 is no longer visible, 
indicating that 2a does not contain N2 in the solid state. Loss of the N-H stretch from DMAH-BF4 
confirms proton transfer from the anilinium to the metal complex occurred.
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Fig. S15: CV of 1 in THF with added equiv TFA
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 Just 1 eq TFA (control)
 (PCP)Rh(N2) with 1 eq TFA

CV of 1.2 mg 1 in 5 mL THF (0.46 mM) with 0.1 M TBA-PF6 and 1 eq. Fc added (black, solid) taken at 50 
mV/s. Upon addition of 1 eq. TFA, an irreversible one-electron reduction occurs at -2.63 V vs. Fc (red, 
solid). IR compensation was set to 3200 Ω. Control experiments of 1 equiv Fc in THF with 0.1 M TBA-PF6 
without (black, dashed) and with (red, dashed) 1 eq. TFA confirm that this reduction event is dependent 
on the presence of both 1 and TFA. 
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Fig. S16: CV of 2 in THF with added equiv TFA

-10x10
-6

-5

0

5

C
ur

re
nt

 (A
)

-3-2-101
Potential (V vs Fc)

 No (PCP)Ir(N2) (control)
 Just (PCP)Ir(N2)
 Just 1 eq TFA (control)
 (PCP)Ir(N2) with 1 eq TFA

CV of 1.4 mg 2 in 5 mL THF (0.46 mM) with 0.1 M TBA-PF6 and 1 eq. Fc added (black, solid) taken at 50 
mV/s. Upon addition of 1 eq. TFA, an irreversible one-electron reduction occurs at -2.42 V vs. Fc (red, 
solid), followed by a substoichiometric reversible reduction at -2.88 V vs. Fc. IR compensation was set to 
3200 Ω. Control experiments of 1 equiv Fc in THF with 0.1 M TBA-PF6 without (black, dashed) and with 
(red, dashed) 1 equiv TFA confirm that these redox events are dependent on the presence of both 2 and 
TFA. 
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Fig. S17: CV of 1 in THF with large excess of TFA
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CV of 1.2 mg 1 in 5 mL THF (0.46 mM) with 0.1 M TBA-PF6 and 1 eq. Fc added (black, solid) taken at 50 
mV/s. Upon addition of 25 eq. TFA, a large irreversible reduction occurs with peak current at -1.93 V vs 
Fc (red, solid) followed by a second reduction at -2.59 V vs Fc. IR compensation was set to 3200 Ω. The 
large current of the first irreversible reduction upon flooding with acid (compare to 1 equiv TFA in Fig. 
S15) is characteristic of electrocatalytic proton reduction. Control experiments of 1 eq. Fc with 25 equiv 
TFA (red, dashed) confirm that the catalytic current is dependent on the presence of 1.
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Fig. S18: CV of 2 in THF with large excess of TFA
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CV of 1.4 mg 2 in 5 mL THF (0.46 mM) with 0.1 M TBA-PF6 and 1 eq. Fc added (black, solid) taken at 50 
mV/s. Upon addition of 25 eq. TFA, a large irreversible reduction occurs with peak current at -2.53 V vs 
Fc (red, solid). IR compensation was set to 3200 Ω. The large current enhancement of this irreversible 
reduction upon flooding with acid (compare to 1 equiv TFA in Fig. S16) is characteristic of 
electrocatalytic proton reduction. Control experiments of 1 equiv Fc with 25 equiv TFA (red, dashed) 
confirm that the catalytic current is dependent on the presence of 2.
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Fig. S19: CV of 2 in THF with added DMAH-BF4
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CV of 1.3 mg 2 in 5 mL THF (0.42 mM) with 0.1 M TBA-PF6 and 1 equiv Fc added (black, solid) taken at 50 
mV/s. Upon addition of 1 eq. DMAH-BF4, an irreversible one-electron reduction occurs at -1.82 V vs. Fc 
(red, solid), followed by a reversible reduction at -2.89 V vs. Fc. IR compensation was set to 3000 Ω. 
Control experiments of 1 equiv Fc in THF with 0.1 M TBA-PF6 without (black, dashed) and with (red, 
dashed) 1 equiv DMAH-BF4 confirm that these redox events are dependent on the presence of both 2 
and DMAH-BF4. 
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Fig. S20: 1H NMR spectra showing reduction of 2a with CoCp2
*

Bottom (1, maroon): 2.9 mg 2 (4.7 µmol) in THF-d8. 1H NMR (500 MHz, THF-d8): δ = 6.83 (d, J = 7.4 Hz, 
2H), 6.54 (t, J = 7.4 Hz, 1H), 3.25 (m, J = 3.9 Hz, 4H), 1.33 (m, J = 6.4 Hz, 36H). Second (2, light green): 2.9 
mg 2 with 1 eq. DMA-BF4 added in THF-d8 to form 2a. Third (3, blue-green): Reduction of 2a with 1.1 eq. 
CoCp2

* in THF-d8, showing hydride resonances at -9.42 ppm and -19.52 ppm characteristic of (PCP)IrH4 
and (PCP)IrH2, respectively.2, 3 Aromatic resonances at 6.83 ppm (d, J = 7.4 Hz) and 6.54 ppm (t, J = 7.4 H) 
correspond to 2. Top (4, purple): 1H NMR spectrum after one week showing full conversion to 2 and 
(PCP)IrH4. The PMe3 peak is from the internal standard in a capillary tube.
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Fig. S21: 1H NMR spectrum of mixture of (PCP)IrH2 and (PCP)IrH4

Mixture of (PCP)IrH2
2 and (PCP)IrH4

3
 in THF-d8, which were prepared according to literature procedures 

and match reported spectra. The PMe3 peak is from the internal standard in a capillary tube.
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Fig. S22: 31P{1H} NMR spectrum of mixture of (PCP)IrH2 and (PCP)IrH4

Mixture of (PCP)IrH2 and (PCP)IrH4 in THF-d8, which were prepared according to literature procedures 
and match reported spectra. Referenced to PMe3 in a capillary tube.
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