Supplementary Information

Near-infrared aza-BODIPY fluorescent probe for selective Cu²⁺ detection and its potential in living cell imaging

Yordkhuan Tachapermpon^a, Sopida Thavornpradit^a, Adisri Charoenpanich^b, Jitnapa Sirirak^a, Kevin Burgess^c and Nantanit Wanichacheva^{*a}

¹Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand ²Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand ³Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA

1. ESI-MS, ¹ H NMR and ¹³ C NMR spectra of 2	S2
2. ESI-MS, ¹ H NMR and ¹³ C NMR spectra of 1	S4
3. The effect of pH value on the fluorescence intensity of $\bf{1}$ in the absence and present of Cu^{2+}	S6
4. The effect of coexisting anion in fluorescence emissions of 1	S6
5. HOMOs, LUMOs and energy gaps of the 1 and 1:Cu²⁺ complexation.	S7

Fig. S1 HR-ESI MS of compound **2**: C₃₈H₃₀BBr₂F₂N₅O₄Na⁺ calcd. 852.0603; m/z [M+Na]⁺ found 852.0612.

Fig. S2 ¹H NMR spectrum of compound 2 in DMSO-d₆ (300 MHz).

Fig. S3 ¹³C NMR spectrum of compound **2** in DMSO-d₆ (75 MHz).

Fig. S4 DEPT-135 NMR spectrum of compound **2** in DMSO-d₆ (75 MHz).

Fig. S5 HR-ESI MS of **1**: $C_{62}H_{55}BF_2N_{11}O_4^+$ calcd. 1066.4494; m/z [M+H]⁺ found 1066.4491.

Fig. S6 ¹H NMR spectrum of **1** in CDCl₃ (300 MHz).

Fig. S7 ¹³C NMR spectrum of $\mathbf{1}$ in CDCl₃ (75 MHz).

Fig. S8 DEPT-135 NMR spectrum of $\mathbf{1}$ in CDCl₃ (75 MHz).

Fig. S9 The effect of coexisting anion in fluorescence emissions (λ_{em} =717 nm) of **1** (5.0 µM) in the absence and present of Cu²⁺ (5.0 µM) in 5 mM PBS buffer (pH 7.4): acetonitrile (95:5 v/v) with 0.5% triton X-100 (λ_{ex} =650 nm).

Fig. S10 The effect of pH on the fluorescence intensity (λ_{em} =717 nm) of **1** (5.0 μ M) in the absence and present of Cu²⁺ (5.0 μ M) in 5 mM PBS buffer (pH 7.4): acetonitrile (95:5 v/v) with 0.5% triton X-100 (λ_{ex} = 650 nm).

Fig. S11 The calculated HOMOs, LUMOs distribution and energy gaps of the 1 and 1:Cu²⁺ complexation.