Facile synthesis of Mn-Fe/CeO₂ nanotubes by gradient electrospinning and their excellent catalytic performances for propane and methane oxidation

Yihong Xiao, Weitao Zhao, Kai Zhang, Yangyu Zhang, Xiuyun Wang^{*}, Tianhua Zhang, Xiangwei Wu, Chongqi Chen and Lilong Jiang^{*}

Corresponding Author E-mail: jllfzu@sina.cn

Experimental

Characterizations

X-ray diffraction (XRD) patterns were conducted on a RIGAKU-Miniflex II X-ray diffractometer with Cu K_{α} radiation ($\lambda = 1.5406$ Å). N₂ physisorption measurement was performed on an ASAP 2020 apparatus. Field Emission Scanning Electron Microscope (FE-SEM) was carried out on JSM6700-F. Transmission electron microscopy (TEM) measurements were carried out on a JEM-2010 microscope operating at 200 kV with an energy dispersive X-ray spectroscopy (EDX) detector. The preparation of samples for analysis involved being ultrasonically dispersed in absolute ethanol and deposition on a carbon-Cu grid. Thermal analysis (TGA) of the sample was performed using a STA449C apparatus (NETZSCH). Samples of about 10 mg were loaded into an alumina pan, then heated from 25 to 800 °C at a rate of 10 °C/min. All measurements were conducted under air. Atomic force microscopy (AFM) imaging was done using Bruker Dimension ICON AFM. The AFM imaging was done by drop-casting the methanolic dispersions of the LDHs on silicon wafers followed by drying and incubation for 12 h. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was carried out using an Ultima2 spectrometer. X-ray photoelectron spectroscopy (XPS) analysis was conducted on Physical Electronics Quantum 2000, equipped with a monochromatic Al-K_a source (K_a = 1,486.6 eV) and a charge neutralizer. Raman spectra of samples were recorded at ambient condition on a Renishaw spectrometer, and a laser beam (λ = 532 nm) was used for the excitation. H₂ temperature-programmed reduction (H₂-TPR) was performed on a Micromeritics AutoChem II 2920 equipped with a TCD detector, in which the catalysts was pre-treated under air flow (30 mL/min) at 400 °C for 0.5 h, purged with Ar (30 mL/min) for 0.5 h and then naturally cooled down to ambient temperature. H₂-TPR measurement was recorded from 50 to 800 °C under 10 vol% H₂/Ar. Oxygen temperature-programmed desorption (O₂-TPD) was carried out on an AutoChem 2920 equipped with a TCD detector. The sample was heated to 900 °C at a rate of 1 °C/min in a pure He gas flow and the signals for O₂ (m/z = 32), H₂O (m/z= 18), and CO₂ (m/z=44) were detected online by using a Hiden QIC-20 quadruple mass spectroscopy (Q-MS).

Figure S1 TGA weight percentage versus temperature curves for PAN and PVP.

Figure S2 (A) XRD patterns; (B) Raman spectra; (C) H₂-TPR profiles and (D) O₂-TPD-MS of Mn-Fe/CeO₂-P, Mn-Fe/CeO₂-P1 and Mn-Fe/CeO₂-P3 catalysts.

Figure S3 Water-resistant performance of Mn-Fe/CeO₂-P1 at 400 °C

Figure S4 Methane conversion of Mn-Fe/CeO₂ catalysts.

Sample	Mn content	Fe content	Ce content		
	(wt.%)	(wt.%)	(wt.%)		
Mn-Fe/CeO ₂ -P	8.51	8.81	44.70		
Mn-Fe/CeO ₂ -P1	8.39	8.74	43.84		
Mn-Fe/CeO ₂ -P3	8.71	8.96	45.11		

Table S1	ICP results	of as-pre	pared Mn-	Fe/CeO ₂	catalysts
	ici iobuito		parea min	10,0002	catary bib.

Sample	$\mathbf{S}_{\mathrm{BET}}$	T ₅₀	T _{90%}	Surfac	Surface atomic concentration		Relative molar ratios by			
	(m ² /g)	%	(°C)		by XPS (%)		XPS (%)			
		(°C)		Mn	Fe	Ce	Ο	$Mn^{4+}/(Mn^{3})$	Ce ³⁺ /(Ce ³⁺	$\mathrm{O}_{\mathrm{ads}}/(\mathrm{O}_{\mathrm{ads}}+$
								+ + Mn ⁴⁺)	+ Ce ⁴⁺)	O _{latt})
Mn-Fe/CeO ₂ -P	100	339	-	5.15	6.31	8.55	50.91	45	25	46
Mn-Fe/CeO ₂ -P1	89	318	382	4.51	5.85	8.79	51.58	45	27	51
Mn-Fe/CeO ₂ -P3	96	398	-	3.32	7.12	7.12	49.55	46	27	46

Table S2. BET surface area, reaction temperature, surface atomicconcentration, Mn^{4+}/Mn^{3+} , $Ce^{3+}/(Ce^{4+}+Ce^{3+})$ and $O_{ads}/(O_{ads}+O_{latt})$ molar ratios.