Supporting information for the article

Synthesis of 13-vertex Dimetallacarboranes by Electrophilic Insertion into 12-vertex Ruthenacarboranes

Dmitry S. Perekalin*, Konstantin A. Lyssenko, Alexander R. Kudinov, Maddalena Corsini, Fabrizia Fabrizi de Biani

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation

INSTM and Dipartimento di Biotecnologie, Chimica e Farmacia dell'Università di Siena, Via Aldo Moro, 53100 Siena, Italy

General Remarks. All reactions were carried out under argon in anhydrous solvents which were purified and dried using standard procedures. The isolation of products was conducted in air. The starting materials $[Co(C_6Me_6)_2]PF_{6,1}$ $[(C_4Me_4)Co(MeCN)_3]PF_6$ and $[(C_4Me_4)Co(C_6H_6)]PF_{6,2}$ $[CpRu(MeCN)_3]PF_{6,3}$ [Cp*Ru(MeCN)₃]PF₆,⁴ [Cp*RuCl]₄,⁵ [CpNi(SMe₂)₂]BF₄,⁶ Tl₂[7,8-C₂B₉H₁₁] and Tl₂[7,8-Me₂-7,8-C₂B₉H₉],⁷ complexes $1,^8$ and 6 (ref.⁹) were prepared as described in the literature. The compound Tl₂[7,8-CH₂OCH₂-7,8-C₂B₉H₉] was prepared similar to preparation of Tl_2 [7,8-C₂B₉H₁₁] from the corresponding 1,2-CH₂OCH₂-1,2-C₂B₁₀H₁₀ carborane. Visible light irradiation was performed by a high pressure mercury vapor lamp with phosphor coated bulb (400 W, Philips HPL Comfort). The ¹H and ¹¹B{¹H} NMR spectra were recorded with a Bruker Avance 400 spectrometer operating at 400.13 and 128.38 MHz, respectively. Chemical shifts are given in ppm relative to residual signals of the solvents (¹H) or external BF_3 ·OEt₂ (¹¹B). Electrochemistry and spectroelectrochemistry: anhydrous 99.9% dichloromethane was an Aldrich product, Fluka [NBu₄][PF₆] (electrochemical grade) was used as supporting electrolyte (0.2 M). Cyclic voltammetry was performed in a three-electrode cell containing a platinum working electrode surrounded by a platinum-spiral counter electrode, and an aqueous saturated calomel reference electrode (SCE) mounted with a Luggin capillary. Controlled potential coulometry was performed in an H-shaped cell with anodic and cathodic compartments separated by a sintered-glass disk. The working macroelectrode was a platinum gauze; a mercury pool was used as the counter electrode. A BAS 100W electrochemical analyzer was used as polarizing unit. All the potential values are referred to the saturated calomel electrode (SCE). Under the present experimental conditions, the one-electron oxidation of ferrocene occurs at E°'=+0.39 V. The UV-vis spectroelectrochemical measurements were carried out using a PerkinElmer Lambda 900 UVvis spectrophotometer and an OTTLE (optically transparent thin-layer electrode) cell¹⁰ equipped with a Pt-minigrid working electrod, Pt minigrid auxiliary electrode, Ag wire pseudoreference and CaF2 windows. The electrode potential was controlled during electrolysis by an Amel potentiostat 2059 equipped with an Amel function generator 568. Nitrogen-saturated CH₂Cl₂ solutions of the compound under study were used with [NBu₄][PF₆] (0.2 M) as supporting electrolyte.

TI[**3-Cp*-1,2-CH**₂**OCH**₂**-3,1,2-RuC**₂**B**₉**H**₉] (**3**). A mixture of [Cp*RuCl]₄ (109 mg, 0.1 mmol) and Tl₂[7,8-CH₂OCH₂-7,8-C₂B₉H₉] (292 mg, 0.5 mmol) was stirred for 48 h in 8 ml of MeCN and then evaporated in vacuo. The residue was dissolved in THF, filtered and the pale yellow solid was precipitated by excess of Et₂O. Yield 178 mg (72%). ¹H NMR ((CD₃)₂CO): δ = 4.31 (s, 4H, CH₂), 1.89 (s, 15H, Cp*); ¹¹B{¹H} NMR: δ = 0.8, -6.6, -8.0, -16.3, -23.8 (1:2:1:3:2). Anal. Calcd. for C₁₄H₂₈B₉ORuTl: C, 27.34; H, 4.59; B, 15.82. Found: C, 27.50; H, 4.72; B, 15.61.

CpRu(**C**₂**B**₉**H**₁₁)**RuCp*** (2a). A mixture of TI[3-Cp*-3,1,2-RuC₂B₉H₁₁] (1) (86 mg, 0.15 mmol) and [CpRu(MeCN)₃]PF₆ (65 mg, 0.15 mmol) was refluxed in 5 ml of CH₃NO₂ for 4 h, while the color changed from yellow to red. The resulting solution was evaporated, the residue was dissolved in CH₂Cl₂ and eluted through a short layer of Al₂O₃ (3 cm). The red fraction was reduced in vacuo to ca. 2 ml and excess of petroleum ether was added to precipitate orange-red crystals. Yield 38 mg (47%). ¹H NMR (CDCl₃): δ = 5.22 (s, 5H, Cp), 1.60 (s, 15H, Cp*), -0.69 (bs, 2H, CH_{cage}); ¹¹B{¹H} NMR: δ = 95.1, 38.3, 31.9, 17.9, 16.2, -5.3 (1:1:1:2:2:2). Anal. Calcd. for C₁₇H₃₁B₉Ru₂: C 38.17, H 5.84, B 18.19. Found: C 38.16, H 5.89, B 18.11.

Cp*Ru(C₂B₉H₁₁)RuCp* (2b). (a) A mixture of TI[3-Cp*-3,1,2-RuC₂B₉H₁₁] (**1**) (86 mg, 0.15 mmol) and [Cp*RuCl]₄ (41 mg, 0.037 mmol) was stirred for 4 h in 4 ml of THF, while the color changed from orange to dark-red. The resulting solution was evaporated, the residue was dissolved in CH₂Cl₂ and eluted through a short layer of Al₂O₃ (3 cm). The red fraction was reduced in vacuo to ca. 2 ml and excess of petroleum ether was added to precipitate orange-red crystals. Yield 67 mg (74%). ¹H NMR (CDCl₃): δ = 1.59 (s, 30H, Cp*), -1.27 (bs, 2H, CH_{cage}); ¹¹B{¹H} NMR: δ = 97.0, 36.4, 17.8, -5.6 (1:2:4:2). Anal. Calcd. for C₂₂H₄₁B₉Ru₂: C 43.68, H 6.83, B 16.80. Found: C 43.65, H 6.78, B 16.98.

(b) The direct reaction of $TI_2[7,8-C_2B_9H_{11}]$ (81 mg, 0.15 mmol) with $[Cp*RuCl]_4$ (82 mg, 0.075 mmol) in 5 ml THF for 48 h, followed by the isolation as described above give 64 mg (70%) of **2b**.

CpRu(C₂B₉H₁₁)RuCp (2c). A mixture of Tl₂[7,8-C₂B₉H₉] (81 mg, 0.15 mmol) and [CpRu(MeCN)₃]PF₆ (130 mg, 0.3 mmol) was stirred for 18 h in 6 ml of THF. The resulting solution was evaporated, the residue was dissolved in CH₂Cl₂ and eluted through a short layer of Al₂O₃ (3 cm). The red fraction was reduced in vacuo to ca. 2 ml and excess of petroleum ether was added to precipitate orange-red crystals. Yield 93 mg (67%). ¹H NMR (CDCl₃): δ = 5.26 (s, 10H, Cp), -1.24 (bs, 2H, CH_{cage}); ¹¹B{¹H} NMR: δ = 93.9, 33.7, 16.4, -4.9 (1:2:4:2). Anal. Calcd. for C₁₂H₁₉B₉Ru₂: C 31.17, H 4.11, B 21.04. Found: C 31.40, H 4.32, B 20.81.

Cp*Ru(Me₂C₂B₉H₉)RuCp* (2d). A mixture of Tl₂[7,8-Me₂-7,8-C₂B₉H₉] (114 mg, 0.2 mmol) and [Cp*RuCl]₄ (97 mg, 0.09 mmol) was stirred for 18 h in 4 ml of THF. The resulting solution was evaporated, the residue was dissolved in CH₂Cl₂ and eluted through a short layer of Al₂O₃ (3 cm). The orange fraction was reduced in vacuo to ca. 2 ml and excess of petroleum ether was added to precipitate orange crystals. Yield 60 mg (53%). NMR (CDCl₃): δ = 1.60 (s, 30H, Cp*), 0.62 (s, 6H, CMe_{cage}); ¹¹B{¹H} NMR: δ = 101.0, 35.5, 22.2, -5.2 (1:2:4:2). Anal. Calcd. for C₂₄H₄₅B₉Ru₂: C 45.53, H 7.16, B 15.37. Found: C 45.70, H 7.25, B 15.12.

3-Cp*-1,2-CH₂OCH₂-7-C₄H₈O-3,1,2-RuC₂B₉H₈ (4). A mixture of TI[3-Cp*-1,2-CH₂OCH₂-3,1,2-RuC₂B₉H₉] (**3**) (104 mg, 0.2 mmol) and [Cp*RuCl]₄ (54 mg, 0.05 mmol) was stirred for 14 h in 5 ml of THF. The resulting solution was evaporated, the residue was dissolved in CH₂Cl₂ and eluted through a Al₂O₃ column (8 cm). The orange fraction was reduced in vacuo to ca. 2 ml and excess of petroleum ether was added to precipitate pale orange powder of **4**. Yield 56 mg (58%). ¹H NMR ((CD₃)₂CO): δ = 4.26 (s, 4H, κap6. CH₂OCH₂), 4.13 (d (*J* = 6), 2H, α-CH₂ (C₄H₈O)), 4.02 (d (*J* = 6), 2H, α-CH₂ (C₄H₈O)), 2.24 (m, 4H, β-CH₂ (C₄H₈O)), 1.82 (c, 15H, Cp*); ¹¹B{¹H} NMR: δ = 22.33 (B-OC₄H₈), -8.51, -10.75, -17.24, -19.11, -24.25 (1:2:1:2!). Anal. Calcd. for C₁₈H₃₅B₉O₂Ru: C 44.87, H 7.32, B 20.19. Found: C 45.12, H 7.44, B 19.96.

(C₄Me₄)Co(C₂B₉H₁₁)RuCp* (5). A mixture of TI[3-Cp*-3,1,2-RuC₂B₉H₁₁] (1) (86 mg, 0.15 mmol) and $[(C_4Me_4)Co(C_6H_6)]PF_6$ (59 mg, 0.15 mmol) in 4 ml of THF and 12 ml CH₂Cl₂ was irradiated with stirring for 4 h. The resulting solution was evaporated, the residue was dissolved in CH₂Cl₂ and eluted through a short layer of Al₂O₃ (3 cm). The red fraction was reduced in vacuo to ca. 2 ml and excess of petroleum ether was added to precipitate orange-red crystals. Yield 41 mg (51%). ¹H NMR (CDCl₃): δ = 1.64 (s, 15H, Cp*), 1.25 (s, 12H, (C₄Me₄)Co), -0.76 (bs, 2H, CH_{cage}); ¹¹B{¹H} NMR: δ = 103.9, 43.3, 39.8, 29.0, 23.1, 1.9 (1:1:1:2:2:2). Anal. Calcd. for C₂₀H₃₈B₉CoRu: C 44.73, H 7.15, B 18.16. Found: C 44.92, H 7.46, B 18.10.

[(C_5R_5)Ru(Me₂SC₂B₉H₁₀)RuCp*]PF₆ (7a,b). The solution of 6 (43 mg, 0.1 mmol) and [(C_5R_5)Ru(MeCN)₃]PF₆ (R = H, Me) (0.1 mmol) in MeNO₂ (2 mL) was refluxed for 4 h. Then the solvent was evaporated, the residue was dissolved in acetone and chromatographed on short Al₂O₃ column (10 cm) with acetone as the eluent. The orange band was collected, evaporated and the residue was reprecipitated from CH₂Cl₂ with ether to give **7a**,**b** as orange-red crystals (yield is ca. 60%).

For **7a**: ¹H NMR (CD₂Cl₂): δ = 5.50 (s, 5H, Cp), 2.63 (s, 3H, SMe₂), 2.12 (s, 3H, SMe₂), 1.71 (s, 15H, Cp*), -0.03 (bs, 1H, CH_{cage}), -0.84 (bs, 1H, CH_{cage}); ¹¹B{¹H} NMR: δ = 96.4, 31.5, 30.9, 18.6, 16.8, 12.4, 12.2, -2.7, -10.52 (1:1:1:1:1:1:1). Anal. Calcd. for C₁₉H₃₆B₉F₆PRu₂S: C 30.80, H 4.90. Found: C 31.23, H 5.08. For **7b**: ¹H NMR (CD₂Cl₂): δ = 2.63 (s, 3H, SMe₂), 2.13 (s, 3H, SMe₂), 1.70 (s, 15H, Cp*), 1.64 (s, 15H, Cp*), -0.72 (bs, 1H, CH_{cage}), -1.41 (bs, 1H, CH_{cage}); ¹¹B{¹H} NMR: δ = 97.8, 35.1, 29.9, 18.7, 13.1, 12.4, -2.9, - 10.9 (1:1:1:2:1:1:1). Anal. Calcd. for C₂₄H₄₆B₉F₆PRu₂S: C 35.34, H 5.72. Found: C 35.89, H 5.96.

[(C₄Me₄)Co(Me₂SC₂B₉H₁₀)RuCp*]PF₆ (8). The solution of **6** (43 mg, 0.1 mmol) and [(C₄Me₄)Co(MeCN)₃]PF₆ (R = H, Me) (44 mg, 0.1 mmol) in MeNO₂ (2 mL) was refluxed for 4 h. Then the solvent was evaporated, the residue was dissolved in acetone and chromatographed on short Al₂O₃ column (10 cm) with acetone as the eluent. The orange band was collected, evaporated and the residue was reprecipitated from CH₂Cl₂ with ether to give **8** as red crystals (28 mg, 38%). ¹H NMR ((CD₃)₂CO): δ = 2.76 (s, 3H, SMe₂), 2.20 (s, 3H, SMe₂), 1.80 (s, 12H, C₄Me₄), 1.77 (s, 15H, Cp*), -0.14 (bs, 1H, CH_{cage}), -0.62 (bs, 1H, CH_{cage}); ¹¹B{¹H} NMR: δ = 106.6, 41.3, 31.4, 24.7, 21.6, 16.1, 14.9, 4.3, -4.8 (1:1:1:1:1:1:1:1:1). Anal. Calcd. for C₂₂H₄₃B₉CoF₆PRuS: C 35.62, H 5.84, B 13.11. Found: C 35.44, H 5.63, B 13.26.

CpNi(C₂B₉H₁₁)RuCp* (9a). A mixture of TI[3-Cp*-3,1,2-RuC₂B₉H₁₁] (**1**) (86 mg, 0.15 mmol) and [CpNi(SMe₂)₂]BF₄ (50 mg, 0.15 mmol) was stirred for 4 h in 5 ml of THF. The resulting solution was evaporated, the residue was dissolved in CH₂Cl₂ and eluted through a short layer of Al₂O₃ (3 cm). The red fraction was reduced in vacuo to ca. 2 ml and excess of petroleum ether was added to precipitate dark-red crystals. Yield 42 mg (57%). ¹H NMR (CDCl₃): δ = 5.76 (5H, CpNi), 3.88 (bs, 2H, CH_{cage}), 1.72 (s, 15H, Cp*); ¹¹B{¹H} NMR: δ = 39.72, 21.95, 11.29, 0.03, -5.83 (1:2:3:1:2). Anal. Calcd. for C₁₇H₃₁B₉NiRu: C 41.46, H 6.34, B 19.76. Found: C 41.44, H 6.27, B 19.57.

Cp*Ni(C₂B₉H₁₁)RuCp* (9b). To the cooled (–78 °C) solution of NiBr₂·DME (46 mg, 0.15 mmol) in THF (3 ml) the suspension of Cp*Li in THF (1 ml, 0.15 mmol) was added and the resulting mixture was stirred for 20 min to produce [Cp*NiBr]₂. Then complex Tl[3-Cp*-3,1,2-RuC₂B₉H₁₁] (**1**) (86 mg, 0.15 mmol) was added and the mixture was stirred for additional 1 h. The resulting solution was evaporated, the residue was dissolved in CH₂Cl₂ and eluted through a short layer of Al₂O₃ (3 cm). The red fraction was reduced in vacuo to ca. 2 ml and excess of petroleum ether was added to precipitate dark-red crystals. Yield 24 mg (29%). ¹H NMR (CDCl₃): δ = 3.28 (bs, 2H, CH_{cage}), 1.75 (15H, Cp*Ni), 1.70 (s, 15H, Cp*); ¹¹B{¹H} NMR: δ = 35.11, 21.99, 17.02, 9.79, 4.07, –7.30 (1:2:1:2:1:2). Anal. Calcd. for C₂₂H₄₁B₉NiRu: C 47.00, H 7.30, B 17.31. Found: C 47.24, H 7.33, B 17.09.

(C₆Me₆)Co(C₂B₉H₁₁)RuCp* (10). A mixture of TI[3-Cp*-3,1,2-RuC₂B₉H₁₁] (1) (86 mg, 0.15 mmol) and $[Co(C_6Me_6)_2]PF_6$ (79 mg, 0.15 mmol) was stirred for 4 h in 5 ml of THF. The resulting solution was evaporated, the residue was dissolved in CH₂Cl₂ and eluted through a short layer of Al₂O₃ (3 cm). The red fraction was reduced in vacuo to ca. 2 ml and excess of petroleum ether was added to precipitate dark-red crystals. Yield 50 mg (56%). ¹H NMR (CDCl₃): δ = 2.84 (bs, 2H, CH_{cage}), 2.15 (18H, (C₆Me₆Co), 1.67 (s, 15H, Cp*); ¹¹B{¹H} NMR: δ = 30.54, 13.35, 8.57, -0.81, -9.92 (1:3:2:1:2). Anal. Calcd. for C₂₄H₄₂B₉CoRu: C 49.03, H 7.20, B 16.55. Found: C 49.24, H 7.48, B 16.30.

Reduction of 2b. To the bright red suspension of **2b** (60 mg, 0.1 mmol) in 3 ml of THF a solution of NaC₁₀H₈ in THF (0.2 ml, 0.5M, 0.1 mmol) was added. The dissolution occurs immediately and the reaction mixture turns dark violet. The ¹¹B NMR spectrum of the sample confirms the formation of paramagnetic species assigned as [**2b**]⁻. After 10 minutes the additional 0.2 ml of NaC₁₀H₈ solution was added and the reaction mixture became bright red. The addition of AcOH (0.1 ml) leads to the vigorous gas evolution and formation of **2b**. In order to record ¹H NMR spectra the reduction was performed in THF-*d*₈ by the Na/K alloy. ¹H NMR of [**2b**]²⁻: δ = 1.87 (s, 30H, Cp*); ¹¹B{¹H} NMR: δ = -8.52, -16.57, -19.62 (2:4:2).

X-ray diffraction study. X-ray diffraction data were collected on a APEX II CCD diffractometer using molybdenum radiation [λ (MoK α) = 0.71072 Å, ω -scans] for **5** and **9A**. The substantial redundancy in data allowed empirical absorption correction to be applied with SADABS by multiple measurements of equivalent reflections. The structures were solved by direct methods and refined by the full-matrix least-squares technique against F^2 in the anisotropic-isotropic approximation. The positional and anisotropic displacement parameters of the disordered Cp ring and boron atoms in one of the independent molecules in **9a** were refined with the constraints on the bond length (DFIX) and anisotropic displacement parameters (EADP). C-H hydrogen atoms in Cp and cyclobutadiene ligands were placed in calculated positions and refined within the riding model, while C-H and B-H hydrogen atoms of carborane polyhedron were located from the Fourier density synthesis. All calculations were performed with the SHELXTL software package.¹¹

Crystal data and structure refinement parameters are listed in the table below. Crystallographic data for the structures reported in this paper have been deposited to the Cambridge Crystallographic Data Centre: CCDC- 1570484 (for **5**) and CCDC- 1570483 (for **9a**). These data can be obtained free of charge from The Cambridge Crystallographic Data via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

	5	9a
Brutto formula	C ₂₀ H ₃₈ B ₉ CoRu	$C_{17}H_{31}B_9NiRu$
Formula weight	535.79	492.49
Т, К	120	120
Space group	P2 ₁ /c	Pca2 ₁
Z(Z')	4	8(2)
a/Å	8.2693(9)	14.285(4)
b/Å	14.9393(16)	10.242(3)
c/Å	20.259(2)	28.482(7)
β/°	100.603(2)	90.000
Volume/ų	2460.0(5)	4167.4(18)
$\rho_{calc}g/cm^3$	1.447	1.570
μ/cm ⁻¹	1.295	16.29
F(000)	1096	2000
2θ _{max} , °	60.00	58
Reflections collected (R _{int})	20373(0.1578)	44789 (0.0381)
Independent reflections	7146	11044
Reflections with I>2σ(I)	3194	9293
Parameters	293	514
R1 [I>25 (I)]	0.0545	0.0419
wR ₂	0.1284	0.0938
GOF	0.952	1.142
Residual electron density, e·Å ⁻³ (ρ _{min} /ρ _{max})	-0.877/ 1.325	-0.766/2.760

Table 1. Crystal data and structure refinement parameters for 5 and 9a.

Computational details. Geometry optimizations were performed using PBE exchange-correlation functional,¹² the scalar-relativistic Hamiltonian,¹³ atomic basis sets of generally-contracted Gaussian functions,¹⁴ and a density-fitting technique¹⁵ as implemented in a recent version of PRIRODA code.¹⁶ The all-electron double-ζ basis set L1 augmented by one polarization function was used.¹⁷ Preliminary search for transition states was performed at the B3LYP/TZ2P level by QST3 procedure available in Gaussian 98 program.¹⁸ This was followed by transition state optimization carried out by PRIRODA. Frequency calculations were performed to confirm the nature of the stationary points, yielding one imaginary frequency for the transition states and none for the minima. ZPE corrections were added to total energy. The path of the reaction was traced from the transition state to the product and back to the reactant using the Intrinsic Reaction Coordinate method (IRC).¹⁹ The visualization of calculation results was performed by ChemCraft (version 1.6) software (www.chemcraftprog.com). Cartesian coordinates for the optimized structure are available as Supporting information in form of the combined xyz file.

Figure 1S. Overlay of the X-ray structures of the C_s -symmetrical metallacarborane $(C_4Me_4)Co(C_2B_9H_{11})RuCp^*$ (5; shown in white) and the distorted metallacarborane CpNi(C₂B₉H₁₁)RuCp^{*} (9a; coloured).

¹H NMR spectrum of $(C_4Me_4)Co(C_2B_9H_{11})RuCp^*$ (5) in CDCl₃

¹¹B NMR spectrum of $(C_4Me_4)Co(C_2B_9H_{11})RuCp^*$ (5) in CDCl₃

¹H NMR spectrum of CpNi(C₂B₉H₁₁)RuCp* (9a) in CDCl₃

 ^{11}B NMR spectrum of (C_6Me_6)Co(C_2B_9H_{11})RuCp* (10) in CH_2Cl_2/(CD_3)_2CO at 50 $^\circ\text{C}$

¹¹B NMR spectrum of (C₆Me₆)Co(C₂B₉H₁₁)RuCp* (10) in CH₂Cl₂/(CD₃)₂CO at -50 °C

References

⁶ Kuhn, N.; Winter, M. Chem. Ztg. **1983**, 107, 73.

⁸ Kudinov, A. R.; Perekalin, D. S.; Rynin, S. S.; Lyssenko, K. A.; Grintselev-Knyazev, G. V.; Petrovskii, P. V. *Angew. Chem. Int. Ed.* **2002**, *41*, 4112.

⁹ Kudinov, A. R.; Petrovskii, P. V.; Meshcheryakov, V. I.; Rybinskaya, M. I. *Russ. Chem. Bull.* **1999**, *48*, 1356.

- ¹⁰ Krejčik, M.; Daněk, M.; Hartl, F. J. Electroanal. Chem. **1991**, 317, 179.
- ¹¹ Sheldrick, M. Acta. Cryst. **2008**, A64, 112.
- ¹² Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. **1996**, 77, 3865.
- ¹³ Dyall, K. G. J. Chem. Phys. **1994**, 100, 2118.
- ¹⁴ Laikov, D. N. Chem. Phys. Lett. **2005**, 416, 116.
- ¹⁵ Laikov, D. N. Chem. Phys. Lett. **1997**, 281, 151.
- ¹⁶ Laikov, D. N.; Ustynyuk, Yu. A. Russ. Chem. Bull. **2005**, 54, 820.
- ¹⁷ Misochko, E. Ya.; Akimov, A. V.; Belov, V. A.; Tyurin, D. A.; Laikov, D. N. *J. Chem. Phys.* **2007**, *127*, 084301.
- ¹⁸ Frisch, M. J.; Pople, J. A. et al. *Gaussian 98*, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

¹⁹ Fukui, K. Acc. Chem. Res. **1980**, *14*, 363.

¹ Fischer, E. O.; Lindner, H. H. J. Organomet. Chem. **1964**, *1*, 307.

² (a) Butovskii, M. V.; Englert, U.; Fil'chikov, A. A.; Herberich, G. E.; Koelle, U.; Kudinov, A. R. *Eur. J. Inorg. Chem.* **2002**, 2656. (b) Mutseneck, E. V.; Loginov, D. A.; Perekalin, D. S.; Starikova, Z. A.; Golovanov, D.

G.; Petrovskii, P. V.; Zanello, P.; Corsini, M.; Laschi, F.; Kudinov, A. R. Organometallics, 2004, 23, 5944.

³ (a) Gill, T. P.; Mann, K. R. *Organometallics* **1982**, *1*, 485. (b) Kündig, E. P.; Monnier, F. R. *Adv. Synth. Catal.* **2004**, *346*, 901.

⁴ Schrenk, J. L.; McNair, A. M.; McCormick, F. B.; Mann, K. R. Inorg. Chem. **1986**, 25, 3501.

⁵ Fagan, P. J.; Ward, M. D.; Calabrese, J. C. J. Amer. Chem. Soc. **1989**, 111, 1698.

⁷ Smith, H. D. Jr., Hawthorne, M. F. *Inorg. Chem.* **1974**, *13*, 2312.