Electronic Supplementary Information

Non-innocence and mixed valency in tri- and tetranuclear ruthenium complexes of a heteroquinone bridging ligand

Mohd. Ansari Ansari,^a Abhishek Mandal,^a Katharina Beyer,^b Alexa Paretzki,^b Brigitte Schwederski,^b Wolfgang Kaim,^{*b} and Goutam Kumar Lahiri^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. E-mail: lahiri@chem.iitb.ac.in ^bInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany. E-mail: kaim@iac.uni-stuttgart.de

1 (Molecule A	A)	1 (Molecule	B)	2	•2CH ₃ CN	
bond angle	X-ray	DFT (S=0)	bond angle	X-ray	bond angle	X-ray	DFT (S=0)
N1-Ru1-O1	81.5(5)	79.382	N5-Ru4-O15	80.3(5)	N1-Ru1-O1	81.74(11)	79.474
N1-Ru1-O3	82.8(5)	90.008	N5-Ru4-O17	170.6(5)	N1-Ru1-O2	174.44(11)	174.173
N1-Ru1-O4	100.5(5)	101.387	N5-Ru4-O18	96.7(5)	N1-Ru1-O3	87.96(11)	85.695
N1-Ru1-O5	170.9(5)	172.164	N5-Ru4-O19	103.9(6)	N1-Ru1-O4	100.56(11)	101.385
N1-Ru1-O6	94.7(5)	91.597	N5-Ru4-O20	84.2(5)	N1-Ru1-O5	90.42(11)	94.873
O1-Ru1-O3	85.7(5)	85.602	O15-Ru4-O17	94.4(5)	O1-Ru1-O2	92.78(10)	95.168
01-Ru1-O4	177.0(4)	176.795	O15-Ru4-O18	92.1(5)	O1-Ru1-O3	86.90(10)	89.128
01-Ru1-O5	91.8(5)	93.064	O15-Ru4-O19	175.7(5)	01-Ru1-O4	174.39(10)	177.251
01-Ru1-06	93.4(5)	95.316	O15-Ru4-O20	86.8(6)	01-Ru1-O5	93.64(10)	92.048
O3-Ru1-O4	92.4(5)	91.279	O17-Ru4-O18	91.2(5)	O2-Ru1-O3	92.69(11)	91.975
O3-Ru1-O5	90.6(5)	87.314	O17-Ru4-O19	81.4(5)	O2-Ru1-O4	84.99(11)	83.863
O3-Ru1-O6	177.4(5)	178.274	O17-Ru4-O20	87.8(5)	O2-Ru1-O5	88.99(11)	87.561
O4-Ru1-O5	86.0(5)	86.043	O18-Ru4-O19	87.2(5)	O3-Ru1-O4	88.06(11)	88.336
O4-Ru1-O6	88.6(5)	87.783	O18-Ru4-O20	178.5(6)	O3-Ru1-O5	178.21(11)	178.770
O5-Ru1-O6	91.8(5)	91.175	O19-Ru4-O20	93.7(6)	O4-Ru1-O5	91.47(11)	90.482
N2-Ru2-O2	82.7(6)	79.343	N6-Ru5-O16	81.3(5)	N2-Ru2-O1/	81.76(11)	79.401
N2-Ru2-O7	93.5(5)	95.199	N6-Ru5-O25	95.1(5)	N2-Ru2-O6	175.22(11)	173.969
N2-Ru2-O8	99.3(6)	100.250	N6-Ru5-O26	99.8(6)	N2-Ru2-O7	87.33(11)	85.570
N2-Ru2-O9	173.5(6)	85.022	N6-Ru5-O27	172.7(6)	N2-Ru2-O8	98.22(11)	101.344
N2-Ru2-O10	85.4(5)	174.369	N6-Ru5-O28	85.0(6)	N2-Ru2-O9	92.14(11)	95.060
O2-Ru2-O7	92.7(5)	93.113	O16-Ru5-O25	93.0(5)	O1/-Ru2-O6	93.49(10)	95.091
O2-Ru2-8	174.2(5)	176.097	O16-Ru5-O26	173.9(5)	O1′-Ru2-O7	86.17(10)	89.414
O2-Ru2-O9	90.9(5)	87.995	O16-Ru5-O27	91.4(5)	O1/-Ru2-O8	174.09(9)	177.274
O2-Ru2-O10	88.7(6)	95.823	O16-Ru5-O28	88.3(5)	O1/-Ru2-O9	93.60(10)	92.027
O7-Ru2-O8	92.6(6)	90.789	O25-Ru5-O26	92.8(5)	O6-Ru2-O7	92.93(10)	91.960
O7-Ru2-O9	88.2(6)	178.891	O25-Ru5-O27	85.7(5)	O6-Ru2-O8	86.57(10)	84.045

Table S1 Selected experimental and DFT calculated bond angles (deg) for 1 and 2 $\,$

O7-Ru2-O10	178.1(6)	87.905	O25-Ru5-O28	178.6(6)	O6-Ru2-O9	87.58(10)	87.542
O8-Ru2-O9	86.9(6)	88.103	O26-Ru5-O27	87.4(6)	07-Ru2-O8	87.93(10)	88.034
O8-Ru2-O10	86.1(6)	84.374	O26-Ru5-O28	85.8(5)	07-Ru2-O9	179.45(11)	178.512
O9-Ru2-O10	93.1(6)	91.964	O27-Ru5-O28	94.3(6)	08-Ru2-O9	92.31(10)	90.519
N3-Ru3-O2	81.8(6)	79.280	N7-Ru6-O16	81.4(5)	-	-	-
N3-Ru3-O11	85.8(5)	86.643	N7-Ru6-O21	85.1(6)	-	-	-
N3-Ru3-O12	175.0(6)	173.953	N7-Ru6-O22	174.8(6)	-	-	-
N3-Ru3-O13	98.4(6)	93.670	N7-Ru6-O23	101.8(5)	-	-	-
N3-Ru3-O14	95.1(5)	102.212	N7-Ru6-O24	94.1(5)	-	-	-
O2-Ru3-O11	86.2(5)	90.362	O16-Ru6-O21	87.3(5)	-	-	-
O2-Ru3O12	93.2(5)	94.862	O16-Ru6-O22	93.5(5)	-	-	-
O2-Ru3-O13	171.4(5)	91.025	O16-Ru6-O23	173.0(5)	-	-	-
O2-Ru3-O14	96.0(5)	177.957	O16-Ru6-O24	94.1(5)	-	-	-
O11-Ru3-O12	94.3(6)	91.934	O21-Ru6-O22	94.4(6)	-	-	-
O11-Ru3-O13	85.2(5)	178.612	O21-Ru6-O23	86.7(5)	-	-	-
O11-Ru3-O14	177.7(5)	88.341	O21-Ru6-O24	178.3(6)	-	-	-
O12-Ru3-O13	86.6(5)	87.892	O22-Ru6-O23	83.3(5)	-	-	-
O12-Ru3-O14	84.9(6)	83.608	O22-Ru6-O24	86.4(5)	-	-	-
O13-Ru3-O14	92.5(5)	90.271	O23-Ru6-O24	91.9(5)	-	-	-

Bond length				D	FT		
	12+	1+	1	1	1-	1 ^{2–}	1 ³⁻
	(<i>S</i> =1)	(S=1/2)	(<i>S</i> =0)	(S=1)	(S=1/2)	(S=1)	(S=1/2)
Ru1-O1	2.076	2.030	2.054	1.999	2.060	2.058	2.072
Ru1-N1	2.153	2.147	2.057	2.136	2.077	2.109	2.120
Ru1-O3	2.027	2.041	2.060	2.066	2.071	2.101	2.131
Ru1-O4	2.021	2.047	2.064	2.076	2.087	2.085	2.087
Ru1-O5	2.010	2.036	2.069	2.063	2.082	2.117	2.090
Ru1-O6	2.018	2.023	2.067	2.040	2.077	2.084	2.120
Ru2-O2	2.166	2.091	2.113	2.156	2.119	2.136	2.158
Ru2-N2	2.163	2.157	2.095	2.076	2.108	2.124	2.125
Ru2-07	2.027	2.047	2.079	2.059	2.083	2.087	2.086
Ru2-O8	2.013	2.029	2.053	2.072	2.084	2.096	2.104
Ru2-O9	2.017	2.025	2.055	2.067	2.070	2.078	2.086
Ru2-O10	2.017	2.046	2.058	2.077	2.078	2.096	2.118
Ru3-O2	2.055	2.080	2.095	2.065	2.112	2.130	2.146
Ru3-N3	2.138	2.162	2.114	2.148	2.114	2.125	2.131
Ru3-O11	2.02	2.026	2.053	2.029	2.070	2.080	2.088
Ru3-O12	2.043	2.053	2.061	2.058	2.080	2.097	2.120
Ru3-O13	2.061	2.053	2.078	2.049	2.083	2.086	2.084
Ru3-O14	2.013	2.029	2.065	2.048	2.091	2.103	2.111
C1-O1	1.257	1.282	1.266	1.290	1.272	1.296	1.295
C1-C2	1.457	1.435	1.442	1.431	1.441	1.425	1.437
C2-N1	1.340	1.347	1.349	1.346	1.349	1.358	1.376
C2-C9	1.426	1.435	1.417	1.432	1.426	1.432	1.409
N1-C3	1.367	1.357	1.383	1.372	1.376	1.377	1.377
C3-C4	1.416	1.423	1.412	1.415	1.416	1.413	1.412
C3-C8	1.451	1.456	1.440	1.443	1.443	1.439	1.448
C4-C5	1.376	1.371	1.382	1.379	1.379	1.385	1.393

Table S2 Selected DFT calculated bond lengths (Å) for 1^n (Molecule A)

S4

C5-C6	1.416	1.42179	1.409	1.411	1.414	1.40574	1.39959
C6-C7	1.378	1.37216	1.382	1.381	1.378	1.38617	1.39355
C7-C8	1.415	1.42314	1.411	1.414	1.418	1.41011	1.41092
C8-N2	1.367	1.35243	1.381	1.380	1.368	1.38328	1.37880
N2-C9	1.349	1.36313	1.346	1.369	1.361	1.34987	1.37531
C9-C10	1.424	1.39818	1.424	1.401	1.410	1.42056	1.42591
C10-O2	1.314	1.35184	1.304	1.340	1.328	1.32236	1.31976
C10-C11	1.423	1.40565	1.424	1.410	1.412	1.41687	1.42621
C11-N3	1.350	1.36108	1.352	1.357	1.365	1.35704	1.37980
C11-C18	1.433	1.44667	1.439	1.449	1.446	1.45245	1.42505
N3-C12	1.365	1.35415	1.374	1.363	1.365	1.37657	1.37942
C12-C13	1.414	1.42226	1.415	1.419	1.420	1.41396	1.40981
C12-C17	1.450	1.45256	1.440	1.444	1.442	1.43754	1.44880
C13-C14	1.380	1.37382	1.379	1.378	1.37737	1.38473	1.39824
C14-C15	1.419	1.42497	1.416	1.419	1.41881	1.41132	1.40062
C15-C16	1.375	1.36922	1.377	1.374	1.37484	1.38173	1.39306
C16-C17	1.420	1.42716	1.418	1.422	1.42160	1.41835	1.41910
C17-N4	1.349	1.34011	1.358	1.352	1.35376	1.36003	1.35843
N4-C18	1.321	1.32968	1.318	1.325	1.32286	1.32937	1.35812
C18-C1	1.464	1.44650	1.471	1.448	1.46238	1.45095	1.45193

Bond angle				D	FT		
	1 ²⁺	1+	1	1	1-	1 ²⁻	1 ³⁻
	(<i>S</i> =1)	(S=1/2)	(<i>S</i> =0)	(S=1)	(<i>S</i> =1/2)	(<i>S</i> =1)	(S=1/2)
N1-Ru1-O1	77.882	79.334	79.382	79.330	79.196	79.447	79.144
N1-Ru1-O3	91.779	92.324	90.008	93.030	90.040	90.437	90.600
N1-Ru1-O4	102.618	102.572	101.387	103.686	102.339	103.159	104.017
N1-Ru1-O5	170.282	170.970	172.164	171.002	171.995	171.984	171.841
N1-Ru1-O6	88.697	87.336	91.597	87.455	91.372	90.601	90.570
O1-Ru1-O3	87.187	88.513	85.602	90.339	86.540	88.389	88.729
01-Ru1-O4	176.506	176.590	176.795	176.878	177.258	177.272	176.773
01-Ru1-O5	92.454	91.685	93.064	91.676	93.072	92.723	92.838
01-Ru1-O6	93.106	92.850	95.316	92.214	93.899	91.824	91.398
O3-Ru1-O4	89.340	88.582	91.279	88.700	91.174	90.774	90.576
O3-Ru1-O5	88.723	88.349	87.314	87.241	87.404	87.608	87.686
O3-Ru1-O6	179.485	178.508	178.274	177.447	178.577	178.961	178.826
O4-Ru1-O5	87.091	86.445	86.043	85.311	85.305	84.647	83.984
O4-Ru1-O6	90.365	90.073	87.783	88.750	88.350	88.967	89.233
O5-Ru1-O6	90.841	92.214	91.175	92.672	91.220	91.366	91.142
N2-Ru2-O2	78.699	80.000	79.343	79.949	79.637	78.784	79.070
N2-Ru2-O7	92.695	93.737	95.199	94.839	95.162	95.143	94.809
N2-Ru2-O8	101.302	100.586	100.250	101.694	101.653	102.608	103.080
N2-Ru2-O9	86.467	84.932	85.022	86.384	85.368	85.488	85.967
N2-Ru2-O10	172.597	174.073	174.369	174.426	174.150	173.811	173.819
O2-Ru2-O7	90.057	90.430	93.113	85.917	90.644	90.360	88.763
O2-Ru2-O8	179.941	179.250	176.097	177.316	177.937	177.956	177.846
O2-Ru2-O9	89.302	90.906	87.995	92.778	90.049	89.906	90.955
O2-Ru2-O10	94.434	94.768	95.823	95.755	95.356	95.836	95.478
07-Ru2-O8	89.884	89.065	90.789	91.814	90.840	91.001	90.928

Table S3 Selected DFT calculated bond angles (deg) for 1^n (Molecule A)

07-Ru2-O9	179.032	177.924	178.891	178.026	179.195	179.352	179.108
O7-Ru2-O10	90.049	89.058	87.905	88.357	87.875	87.895	87.933
08-Ru2-O9	90.757	89.614	88.103	89.453	87.875	88.717	89.323
O8-Ru2-O10	85.568	84.670	84.374	82.734	83.267	82.692	82.380
O9-Ru2-O10	90.724	92.414	91.964	90.302	91.651	91.490	91.252
N3-Ru3-O2	79.080	79.769	79.280	79.811	79.690	78.953	79.384
N3-Ru3-O11	84.340	84.814	86.643	83.529	86.200	86.545	86.491
N3-Ru3-O12	174.197	174.381	173.953	173.066	174.133	173.956	174.003
N3-Ru3-O13	95.385	93.764	93.670	95.541	94.064	93.733	93.934
N3-Ru3-O14	100.064	100.722	102.212	101.089	102.370	103.123	103.085
O2-Ru3-O11	89.462	91.291	90.362	92.421	91.337	91.070	91.293
O2-Ru3-O12	95.838	95.278	94.862	94.816	94.914	95.382	95.124
O2-Ru3-O13	94.175	90.396	91.025	88.363	89.019	88.850	88.140
O2-Ru3-O14	177.044	179.240	177.957	177.435	177.931	177.916	177.400
O11-Ru3-O12	92.868	92.693	91.934	92.381	91.659	91.494	91.260
O11-Ru3-O13	176.236	177.568	178.612	178.657	179.590	179.691	179.217
O11-Ru3-O14	87.635	89.332	88.341	90.070	88.999	89.242	89.684
O12-Ru3-O13	87.733	88.896	87.892	88.640	88.108	88.216	88.254
O12-Ru3-O14	84.870	84.257	83.608	84.466	83.035	82.551	82.444
O13-Ru3-O14	88.719	88.994	90.271	89.158	90.637	90.826	90.861

Bond length				D	FT		
	2 ²⁺	2+	2	2	2-	2 ^{2–}	2 ^{3–}
	(<i>S</i> =1)	(S=1/2)	(<i>S</i> =0)	(<i>S</i> =1)	(S=1/2)	(<i>S</i> =1)	(S=1/2)
Ru1-O1	2.118	2.097	2.106	2.076	2.117	2.129	2.139
Ru1-O2	2.033	2.046	2.059	2.051	2.075	2.093	2.109
Ru1-O3	2.020	2.024	2.054	2.026	2.067	2.076	2.084
Ru1-O4	2.017	2.026	2.060	2.047	2.083	2.097	2.122
Ru1-O5	2.036	2.044	2.078	2.043	2.082	2.086	2.086
Ru1-N1	2.172	2.159	2.110	2.148	2.115	2.128	2.134
Ru2-O1/	2.122	2.082	2.106	2.146	2.115	2.128	2.139
Ru2-O6	2.031	2.055	2.054	2.063	2.075	2.092	2.109
Ru2-07	2.021	2.031	2.059	2.072	2.067	2.077	2.085
Ru2-O8	2.020	2.033	2.060	2.076	2.083	2.097	2.122
Ru2-O9	2.033	2.059	2.078	2.069	2.082	2.086	2.086
Ru2-N2	2.162	2.155	2.110	2.087	2.116	2.129	2.134
C1-O1	1.331	1.345	1.305	1.336	1.319	1.323	1.339
C1-C2	1.411	1.406	1.423	1.410	1.415	1.417	1.407
C2-N1	1.355	1.351	1.346	1.353	1.355	1.351	1.363
C2-C9	1.439	1.440	1.426	1.437	1.434	1.438	1.452
N1-C3	1.354	1.364	1.378	1.369	1.368	1.380	1.368
C3-C4	1.423	1.418	1.413	1.417	1.419	1.412	1.419
C3-C8	1.459	1.450	1.443	1.445	1.446	1.439	1.448
C4-C5	1.371	1.375	1.380	1.378	1.375	1.384	1.381
C5-C6	1.422	1.415	1.410	1.411	1.415	1.406	1.412
C6-C7	1.371	1.375	1.380	1.379	1.375	1.384	1.380
С7-С8	1.422	1.418	1.413	1.415	1.419	1.412	1.419
C8-N2	1.355	1.364	1.378	1.379	1.368	1.380	1.368
N2-C9	1.358	1.352	1.346	1.360	1.355	1.351	1.363

Table S4 Selected DFT calculated bond lengths (Å) for 2^n

Bond angle				Dł	FT		
	2 ²⁺	2+	2	2	2-	2 ^{2–}	2 ^{3–}
	(<i>S</i> =1)	(S=1/2)	(S=0)	(S=1)	(S=1/2)	(<i>S</i> =1)	(S=1/2)
N1-Ru1-O1	78.943	79.799	79.474	80.125	79.524	79.034	79.357
N1-Ru1-O2	173.192	173.833	174.173	173.100	174.049	174.011	174.017
N1-Ru1-O3	84.998	85.009	85.695	85.440	85.593	85.784	86.988
N1-Ru1-O4	101.274	100.760	101.385	101.495	102.241	102.802	103.350
N1-Ru1-O5	93.928	93.633	94.873	93.482	95.076	94.799	93.738
O1-Ru1-O2	95.027	94.705	95.168	93.527	95.189	95.584	94.954
O1-Ru1-O3	90.665	90.115	89.128	91.487	90.156	90.127	90.865
O1-Ru1-O4	179.014	179.429	177.251	177.627	177.838	177.915	177.278
01-Ru1-O5	89.681	90.746	92.048	88.782	90.348	89.945	88.759
O2-Ru1-O3	91.968	92.252	91.975	92.071	91.732	91.644	91.277
O2-Ru1-O4	84.809	84.731	83.863	84.935	82.987	82.536	82.350
O2-Ru1-O5	89.160	89.207	87.561	89.052	87.638	87.772	87.949
O3-Ru1-O4	90.312	89.819	88.336	90.375	88.742	89.029	89.579
O3-Ru1-O5	178.787	178.241	178.770	178.826	179.226	179.416	179.107
O4-Ru1-O5	89.345	89.336	90.482	89.386	90.735	90.880	90.758
N2-Ru2-O1/	79.130	79.621	79.401	79.831	79.480	79.016	79.344
N2-Ru2-O6	173.064	174.279	173.969	174.653	173.744	173.614	174.022
N2-Ru2-O7	85.177	85.004	85.570	87.105	85.500	85.684	86.697
N2-Ru2-O8	101.236	100.930	101.344	102.330	102.299	102.922	103.375
N2-Ru2-O9	94.126	94.465	95.060	94.319	95.166	94.833	94.071
O1/-Ru2-O6	94.855	95.191	95.091	95.341	94.964	90.682	95.083
O1′-Ru2-O7	90.944	90.942	89.414	91.710	90.596	95.253	91.354
O1′-Ru2-O8	178.641	179.219	177.274	177.799	177.895	177.920	177.197
O1′-Ru2-O9	89.053	91.214	92.027	88.239	90.207	89.673	88.167
O6-Ru2-O7	91.519	92.721	91.960	90.767	91.727	91.615	91.308

Table S5 Selected DFT calculated bond angles (deg) for 2^n

O6-Ru2-O8	84.858	84.234	84.045	82.516	83.201	82.774	82.225
O6-Ru2-O9	89.188	88.016	87.542	87.788	87.679	87.897	87.866
O7-Ru2-O8	90.392	88.558	88.034	88.827	88.431	88.721	89.495
O7-Ru2-O9	179.291	177.650	178.512	178.543	179.040	179.421	179.004
O8-Ru2-O9	89.614	89.296	90.519	91.170	90.749	90.909	90.943

	2 x 1	2• 2CH ₃ CN
Empirical formula	$C_{102}H_{100}N_8O_{32.50}Ru_6$	$C_{62}H_{70}N_6O_{18}Ru_4$
Formula weight	2564.31	1591.52
Crystal system	Triclinic	Monoclinic
Space group	<i>P</i> 1	$P2_{1}/c$
<i>a</i> / (Å)	11.7442(2)	13.5507(7)
<i>b</i> / (Å)	14.8795(3)	15.9746(6)
c / (Å)	17.1035(3)	15.9722(7)
α/(°)	106.199(2)	90
β/ (°)	103.748(2)	110.089(6)
γ / (°)	100.635(2)	90
$V/(\text{\AA}^3)$	2685.20(9)	3247.1(3)
Ζ	1	2
μ (mm ⁻¹)	7.355	0.987
$ ho_{ m calcd} ({ m g}{ m cm}^{-3})$	1.585	1.628
<i>T /</i> K	100.0(3)	150(2)
F (000)	1292	1608
θ range (deg)	2.828 to 75.038	2.555 to 31.215
data/restraints/parameters	18456/4/1332	5678/0/415
$R_1, wR_2 [I > 2\sigma(I)]$	0.0670, 0.1754	0.0379, 0.0905
R_1 , w R_2 (all data)	0.0703, 0.1790	0.0473, 0.0970
GOF on F^2	1.034	1.045
Largest difference in peak /	2.038, -1.149	0.63, -0.68
hole (e Å ⁻³)		

 Table S6 Selected crystallographic parameters of 1 and 2

compd	$E_{(S=0)}$	$E_{(S=1/2)}$	$E_{(S=1)}$	E _(S=3/2)	$\Delta E_{(\text{HE-LE})}^{a}$
	(Hartrees)	(Hartrees)	(Hartrees)	(Hartrees)	
1 ²⁺	-3412.8304		-3412.8629		0.0325 Hartrees
					85.329 kJ mol ⁻¹
					7133 cm^{-1}
1+		-3413.1510			
1	-3413.3319		-3413.3287		0.0032 Hartrees
					8.402 kJ mol ⁻¹
					702 cm^{-1}
1-		-3413.4229			
12-	-3413.4023		-3413.4110		0.0087 Hartrees
					22.842 kJ mol ⁻¹
					1909 cm ⁻¹
1 ³⁻		-3413.2916		-3413.2754	0.0162 Hartrees
					42.533 kJ mol ⁻¹
					3555 cm ⁻¹

 Table S7 Energies of DFT ((U)B3LYP/LanL2DZ/6-31G*) calculated optimised structures of 1ⁿ

 (Molecule A)

 a HE = spin state higher in energy, LE = spin state lower in energy

compd		Figure	Frank	Fig. a.m.	$\Lambda F_{} = a$
compu	$L_{(S=0)}$	L(S=1/2)	L(S=1)	L(S=3/2)	(HE-LE)
	(Hartrees)	(Hartrees)	(Hartrees)	(Hartrees)	
2 ²⁺	-4197.3251		-4197.3757		0.0506 Hartrees
					132.850 kJ
					mol ⁻¹
					11105 cm^{-1}
2+		-4197.6335			
2	-4197.8065		-4197.8058		0.0007 Hartrees
					1.838 kJ mol ⁻¹
					154 cm ⁻¹
2-		-4197.9003			
2 2–	_/107 8013		_/107 8080		0 0067 Hartrees
2	-4197.0913		-4197.0900		17 501 kI mol-1
					1/.391 KJ 11101
					1470 cm^{-1}
2 ³⁻		-4197.7926		-4197.7779	0.0147 Hartrees
_					38 595 kI mol ⁻¹
					2026 am ⁻¹
					5226 cm ¹

Table S8 Energies of DFT ((U)B3LYP/LanL2DZ/6-31G*) calculated optimised structures of 2^n

 ^{a}HE = spin state higher in energy, LE = spin state lower in energy

МО	Energy	(Composition			
	(eV)	Ru1	Ru2	Ru3	L	acac
HOMO-5	-5.197	0.07	0.51	0.11	0.09	0.22
HOMO-4	-5.132	0.36	0.01	0.24	0.17	0.22
HOMO-3	-4.955	0.36	0.05	0.08	0.09	0.41
HOMO-2	-4.913	0.20	0.30	0.30	0.09	0.28
HOMO-1	-4.752	0.02	0.36	0.25	0.05	0.32
НОМО	-4.661	0.08	0.29	0.22	0.18	0.22
LUMO	-3.145	0.15	0.14	0.15	0.44	0.13
LUMO+1	-2.907	0.17	0.09	0.10	0.56	0.09
LUMO+2	-1.913	0.02	0.02	0.03	0.89	0.03
LUMO+3	-1.031	0.00	0.05	0.01	0.03	0.90
LUMO+4	-0.853	0.02	0.00	0.01	0.81	0.16
LUMO+5	-0.761	0.00	0.01	0.03	0.04	0.92

 Table S9 Composition and energy of selected molecular orbitals of 1 (S=0) (Molecule A)

MO	Energy		Composition			
	(eV)	Ru1	Ru2	Ru3	L	acac
			α-spin			
HOMO-5	-5.520	0.04	0.41	0.10	0.10	0.36
HOMO-4	-5.350	0.00	0.50	0.07	0.10	0.32
HOMO-3	-5.160	0.29	0.07	0.02	0.16	0.46
HOMO-2	-5.050	0.36	0.27	0.01	0.09	0.26
SOMO2	-4.834	0.33	0.31	0.01	0.11	0.24
SOM01	-4.254	0.47	0.00	0.00	0.06	0.47
LUMO	-2.786	0.02	0.27	0.42	0.09	0.21
LUMO+1	-1.660	0.42	0.03	0.06	0.35	0.14
LUMO+2	-1.249	0.07	0.20	0.23	0.35	0.15
LUMO+3	-1.052	0.03	0.03	0.02	0.86	0.06
LUMO+4	-0.857	0.00	0.05	0.02	0.04	0.88
LUMO+5	-0.628	0.00	0.05	0.02	0.03	0.89
			β-spin			
HOMO-5	-5.349	0.14	0.01	0.01	0.80	0.04
HOMO-4	-5.160	0.02	0.01	0.2	0.91	0.03
HOMO-3	-4.937	0.00	0.03	0.01	0.03	0.92
HOMO-2	-4.845	0.00	0.02	0.02	0.03	0.94
HOMO-1	-4.719	0.00	0.00	0.06	0.04	0.90
HOMO	-4.394	0.03	0.01	0.01	0.65	0.31
LUMO	-3.234	0.00	0.16	0.19	0.12	0.53
LUMO+1	-2.408	0.04	0.01	0.01	0.19	0.75
LUMO+2	-2.360	0.00	0.07	0.20	0.18	0.54
LUMO+3	-1.724	0.03	0.05	0.13	0.62	0.17
LUMO+4	-1.142	0.01	0.03	0.36	0.31	0.28
LUMO+5	-0.983	0.01	0.04	0.07	0.82	0.05

 Table S10 Composition and energy of selected molecular orbitals of 1 (S=1) (Molecule A)

MO	Energy	nergy Composition				
	(eV)	Ru1	Ru2	Ru3	L	acac
			α-spin			
HOMO-5	-8.264	0.00	0.01	0.55	0.04	0.40
HOMO-4	-8.076	0.49	0.02	0.06	0.11	0.31
HOMO-3	-7.983	0.15	0.00	0.40	0.11	0.35
HOMO-2	-7.728	0.30	0.01	0.00	0.08	0.61
HOMO-1	-7.396	0.29	0.02	0.05	0.20	0.44
SOMO	-7.322	0.14	0.02	0.17	0.44	0.23
LUMO	-5.704	0.01	0.02	0.58	0.23	0.17
LUMO+1	-5.412	0.13	0.01	0.00	0.83	0.03
LUMO+2	-4.698	0.02	0.01	0.03	0.92	0.02
LUMO+3	-3.893	0.00	0.42	0.07	0.11	0.41
LUMO+4	-3.593	0.00	0.12	0.06	0.06	0.76
LUMO+5	-3.447	0.00	0.04	0.04	0.06	0.89
			β-spin			
HOMO-5	-8.283	0.00	0.01	0.26	0.05	0.68
HOMO-4	-8.076	0.29	0.02	0.00	0.07	0.62
HOMO-3	-7.963	0.00	0.01	0.390	0.04	0.56
HOMO-2	-7.688	0.60	0.01	0.00	0.08	0.31
HOMO-1	-7.495	0.34	0.02	0.00	0.30	0.33
HOMO	-7.044	0.38	0.03	0.01	0.28	0.30
LUMO	-6.118	0.08	0.52	0.01	0.21	0.19
LUMO+1	-5.761	0.03	0.25	0.04	0.60	0.09
LUMO+2	-5.231	0.43	0.01	0.00	0.46	0.10
LUMO+3	-4.617	0.02	0.02	0.02	0.91	0.02
LUMO+4	-3.750	0.00	0.25	0.11	0.08	0.56
LUMO+5	-3.557	0.00	0.09	0.20	0.08	0.62

Table S11 Composition and energy of selected molecular orbitals of $1^+(S=1/2)$ (Molecule A)

MO	Energy	(Composition			
	(eV)	Ru1	Ru2	Ru3	L	acac
			α-spin			
HOMO-5	-10.696	0.02	0.02	0.59	0.07	0.31
HOMO-4	-10.679	0.18	0.01	0.05	0.06	0.71
HOMO-3	-10.534	0.00	0.23	0.02	0.02	0.73
HOMO-2	-10.341	0.04	0.02	0.44	0.14	0.37
SOMO2	-10.257	0.22	0.00	0.07	0.03	0.67
SOM01	-9.824	0.03	0.01	0.30	0.33	0.33
LUMO	-8.550	0.02	0.03	0.36	0.44	0.15
LUMO+1	-8.132	0.06	0.02	0.04	0.85	0.03
LUMO+2	-7.043	0.01	0.01	0.03	0.95	0.01
LUMO+3	-6.072	0.00	0.34	0.06	0.12	0.48
LUMO+4	-5.841	0.00	0.00	0.00	0.98	0.02
LUMO+5	-5.764	0.00	0.20	0.09	0.12	0.58
			β-spin			
HOMO-5	-10.711	0.07	0.04	0.47	0.10	0.31
HOMO-4	-10.625	0.07	0.23	0.05	0.08	0.57
HOMO-3	-10.593	0.28	0.10	0.05	0.08	0.49
HOMO-2	-10.518	0.17	0.01	0.19	0.07	0.56
HOMO-1	-10.382	0.28	0.01	0.05	0.10	0.56
HOMO	-9.651	0.04	0.03	0.31	0.31	0.32
LUMO	-8.751	0.04	0.09	0.28	0.37	0.22
LUMO+1	-8.145	0.12	0.03	0.02	0.77	0.05
LUMO+2	-8.026	0.07	0.56	0.02	0.08	0.28
LUMO+3	-7.766	0.53	0.07	0.01	0.14	0.25
LUMO+4	-7.013	0.03	0.02	0.02	0.92	0.02
LUMO+5	-5.935	0.00	0.20	0.06	0.08	0.66

Table S12 Composition and energy of selected molecular orbitals of $1^{2+}(S=1)$ (Molecule A)

MO	Energy					
	(eV)		Composition			
		Ru1	Ru2	Ru3	L	acac
			α-spin			
HOMO-5	-2.529	0.15	0.16	0.37	0.08	0.25
HOMO-4	-2.464	0.01	0.29	0.47	0.06	0.16
HOMO-3	-2.373	0.54	0.12	0.01	0.07	0.25
HOMO-2	-2.142	0.04	0.36	0.30	0.04	0.26
HOMO-1	-2.019	0.04	0.27	0.36	0.08	0.25
SOMO	-1.472	0.03	0.15	0.15	0.59	0.09
LUMO	-0.473	0.18	0.02	0.02	0.72	0.05
LUMO+1	0.433	0.03	0.02	0.03	0.90	0.02
LUMO+2	1.439	0.03	0.00	0.00	0.06	0.91
LUMO+3	1.589	0.04	0.00	0.00	0.03	0.92
LUMO+4	1.647	0.00	0.03	0.01	0.03	0.93
LUMO+5	1.663	0.00	0.01	0.03	0.07	0.88
			β-spin			
HOMO-5	-2.463	0.17	0.29	0.26	0.09	0.20
HOMO-4	-2.359	0.00	0.35	0.42	0.07	0.16
HOMO-3	-2.310	0.28	0.08	0.25	0.18	0.20
HOMO-2	-2.108	0.06	0.36	0.30	0.08	0.21
HOMO-1	-1.876	0.01	0.56	0.09	0.11	0.22
HOMO	-1.832	0.02	0.11	0.57	0.09	0.22
LUMO	-0.369	0.16	0.02	0.01	0.76	0.05
LUMO+1	-0.019	0.00	0.19	0.18	0.52	0.10
LUMO+2	0.511	0.02	0.03	0.03	0.89	0.03
LUMO+3	1.437	0.03	0.00	0.00	0.05	0.91
LUMO+4	1.593	0.04	0.00	0.00	0.03	0.92
LUMO+5	1.670	0.00	0.02	0.03	0.03	0.92

Table S13 Composition and energy of selected molecular orbitals of $1^{-}(S=1/2)$ (Molecule A)

MO	Energy					
	(eV)	(Composition			
		Ru1	Ru2	Ru3	L	acac-
			α-spin			
HOMO-5	0.124	0.67	0.06	0.02	0.08	0.16
HOMO-4	0.253	0.08	0.23	0.42	0.05	0.22
HOMO-3	0.389	0.07	0.37	0.27	0.08	0.21
HOMO-2	0.451	0.67	0.07	0.01	0.06	0.19
SOMO2	0.937	0.06	0.14	0.14	0.59	0.08
SOM01	1.366	0.14	0.03	0.03	0.76	0.04
LUMO	2.919	0.02	0.02	0.02	0.03	0.91
LUMO+1	3.813	0.00	0.00	0.04	0.04	0.92
LUMO+2	3.846	0.00	0.04	0.00	0.03	0.93
LUMO+3	3.926	0.03	0.00	0.00	0.04	0.93
LUMO+4	4.035	0.06	0.00	0.00	0.04	0.90
LUMO+5	4.095	0.00	0.03	0.04	0.04	0.91
			β-spin			
HOMO-5	0.201	0.18	0.11	0.41	0.12	0.18
HOMO-4	0.248	0.65	0.05	0.03	0.12	0.15
HOMO-3	0.376	0.13	0.12	0.49	0.06	0.21
HOMO-2	0.435	0.21	0.36	0.13	0.09	0.19
HOMO-1	0.573	0.47	0.22	0.06	0.08	0.17
HOMO	0.623	0.32	0.23	0.15	0.13	0.17
LUMO	2.429	0.01	0.15	0.14	0.63	0.08
LUMO+1	2.830	0.14	0.01	0.01	0.79	0.05
LUMO+2	3.377	0.03	0.02	0.02	0.86	0.08
LUMO+3	3.835	0.00	0.00	0.05	0.05	0.89
LUMO+4	3.877	0.00	0.06	0.00	0.04	0.90
LUMO+5	3.936	0.04	0.00	0.00	0.05	0.91

Table S14 Composition and energy of selected molecular orbitals of $1^{2-}(S=1)$ (Molecule A)

MO	Energy					
	(eV)		Compositio	on		
		Ru1	Ru2	Ru3	L	acac
			α-spin			
HOMO-5	2.856	0.00	0.55	0.25	0.05	0.15
HOMO-4	2.908	0.06	0.43	0.29	0.05	0.17
HOMO-3	3.085	0.01	0.31	0.46	0.04	0.18
HOMO-2	3.212	0.04	0.39	0.25	0.16	0.16
HOMO-1	3.748	0.11	0.07	0.05	0.72	0.05
SOMO	4.213	0.01	0.14	0.12	0.67	0.07
LUMO	5.689	0.01	0.01	0.02	0.88	0.08
LUMO+1	5.941	0.03	0.00	0.00	0.03	0.94
LUMO+2	6.046	0.07	0.00	0.00	0.04	0.89
LUMO+3	6.292	0.00	0.00	0.05	0.05	0.90
LUMO+4	6.344	0.00	0.06	0.00	0.03	0.91
LUMO+5	6.574	0.00	0.04	0.06	0.04	0.87
			β-spin			
HOMO-5	2.825	0.40	0.01	0.31	0.11	0.15
HOMO-4	2.860	0.00	0.58	0.22	0.05	0.15
HOMO-3	2.933	0.11	0.48	0.19	0.06	0.17
HOMO-2	3.110	0.02	0.29	0.47	0.04	0.18
HOMO-1	3.286	0.02	0.26	0.45	0.10	0.17
HOMO	4.258	0.01	0.12	0.12	0.69	0.07
LUMO	5.259	0.09	0.01	0.01	0.82	0.07
LUMO+1	5.893	0.01	0.01	0.01	0.58	0.39
LUMO+2	5.978	0.05	0.00	0.00	0.21	0.73
LUMO+3	6.062	0.07	0.00	0.00	0.05	0.88
LUMO+4	6.290	0.00	0.00	0.05	0.05	0.89
LUMO+5	6.356	0.00	0.06	0.00	0.05	0.89

Table S15 Composition and energy of selected molecular orbitals of $1^{3-}(S=1/2)$ (Molecule A)

MO	Energy		Composition		
	(eV)	Ru1	Ru2	L	acac
HOMO-5	-5.120	0.36	0.34	0.05	0.24
HOMO-4	-4.878	0.39	0.36	0.06	0.19
HOMO-3	-4.662	0.18	0.41	0.13	0.28
HOMO-2	-4.556	0.23	0.40	0.02	0.35
HOMO-1	-4.544	0.43	0.19	0.02	0.35
НОМО	-4.330	0.36	0.18	0.17	0.28
LUMO	-3.213	0.25	0.24	0.36	0.14
LUMO+1	-2.980	0.17	0.18	0.57	0.09
LUMO+2	-2.097	0.04	0.04	0.90	0.02
LUMO+3	-0.813	0.05	0.00	0.07	0.87
LUMO+4	-0.810	0.06	0.00	0.03	0.91
LUMO+5	-0.790	0.01	0.00	0.91	0.08

 Table S16 Composition and energy of selected molecular orbitals of 2 (S=0)

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

MO	Energy		Compos	sition	
	(eV)	Ru1	Ru2	L	acac
			α-spin		
HOMO-5	-5.109	0.05	0.71	0.06	0.18
HOMO-4	-5.096	0.20	0.49	0.05	0.27
HOMO-3	-5.075	0.03	0.60	0.15	0.22
HOMO-2	-4.506	0.03	0.48	0.22	0.28
SOMO2	-4.358	0.03	0.41	0.31	0.24
SOM01	-3.872	0.30	0.04	0.54	0.12
LUMO	-2.680	0.04	0.41	0.43	0.12
LUMO+1	-1.852	0.02	0.05	0.91	0.03
LUMO+2	-1.260	0.09	0.00	0.04	0.86
LUMO+3	-0.927	0.04	0.01	0.03	0.93
LUMO+4	-0.921	0.07	0.00	0.04	0.89
LUMO+5	-0.734	0.00	0.06	0.03	0.90
			β-spin		
HOMO-5	-5.161	0.56	0.09	0.08	0.27
HOMO-4	-4.903	0.03	0.74	0.06	0.17
HOMO-3	-4.643	0.02	0.56	0.09	0.33
HOMO-2	-4.595	0.05	0.54	0.18	0.23
HOMO-1	-4.385	0.19	0.24	0.37	0.20
HOMO	-3.877	0.15	0.39	0.25	0.21
LUMO	-3.125	0.63	0.05	0.12	0.21
LUMO+1	-2.662	0.48	0.05	0.33	0.14
LUMO+2	-2.422	0.14	0.32	0.42	0.12
LUMO+3	-1.708	0.03	0.05	0.88	0.04
LUMO+4	-1.217	0.07	0.00	0.04	0.89
LUMO+5	-0.893	0.06	0.00	0.04	0.90

 Table S17 Composition and energy of selected molecular orbitals of 2 (S=1)

MO	Energy	Composition			
	(eV)	Ru1	Ru2	L	acac
			α-spin		
HOMO-5	-7.495	0.07	0.52	0.15	0.25
HOMO-4	-7.466	0.05	0.65	0.10	0.21
HOMO-3	-7.342	0.03	0.38	0.34	0.24
HOMO-2	-7.194	0.08	0.43	0.22	0.26
HOMO-1	-7.016	0.02	0.50	0.20	0.28
SOMO	-6.664	0.03	0.38	0.41	0.18
LUMO	-5.072	0.05	0.41	0.39	0.15
LUMO+1	-4.854	0.02	0.43	0.40	0.15
LUMO+2	-4.419	0.03	0.16	0.74	0.07
LUMO+3	-3.139	0.12	0.01	0.07	0.80
LUMO+4	-3.132	0.11	0.01	0.05	0.84
LUMO+5	-2.893	0.00	0.02	0.73	0.25
			β-spin		
HOMO-5	-7.649	0.09	0.13	0.12	0.67
HOMO-4	-7.640	0.04	0.57	0.08	0.31
HOMO-3	-7.517	0.21	0.28	0.10	0.41
HOMO-2	-7.191	0.02	0.54	0.06	0.38
HOMO-1	-7.159	0.07	0.52	0.06	0.35
HOMO	-6.625	0.18	0.15	0.54	0.13
LUMO	-5.471	0.35	0.06	0.44	0.15
LUMO+1	-5.108	0.33	0.06	0.46	0.14
LUMO+2	-5.047	0.58	0.03	0.18	0.21
LUMO+3	-4.290	0.05	0.06	0.86	0.03
LUMO+4	-3.090	0.09	0.00	0.06	0.84
LUMO+5	-3.088	0.09	0.01	0.04	0.87

Table S18 Composition and energy of selected molecular orbitals of $2^+(S=1/2)$

MO	Energy	Composition				
	(eV)	Ru1	Ru2	L	acac	
			α -spin			
HOMO-5	-10.205	0.36	0.06	0.04	0.54	
HOMO-4	-10.111	0.44	0.04	0.10	0.42	
HOMO-3	-10.037	0.17	0.14	0.02	0.66	
HOMO-2	-10.034	0.02	0.22	0.04	0.72	
SOMO2	-9.902	0.14	0.15	0.03	0.68	
SOM01	-9.291	0.16	0.09	0.65	0.10	
LUMO	-7.843	0.07	0.06	0.84	0.03	
LUMO+1	-7.367	0.66	0.01	0.08	0.25	
LUMO+2	-6.794	0.04	0.03	0.92	0.01	
LUMO+3	-5.618	0.24	0.23	0.14	0.39	
LUMO+4	-5.538	0.13	0.29	0.09	0.49	
LUMO+5	-5.414	0.00	0.00	0.97	0.03	
			β-spin			
HOMO-5	-10.190	0.26	0.23	0.12	0.39	
HOMO-4	-10.146	0.14	0.20	0.05	0.62	
HOMO-3	-10.097	0.09	0.28	0.07	0.57	
HOMO-2	-10.02	0.14	0.38	0.06	0.42	
HOMO-1	-9.908	0.26	0.07	0.03	0.63	
HOMO	-9.316	0.13	0.16	0.59	0.13	
LUMO	-7.885	0.05	0.19	0.69	0.07	
LUMO+1	-7.602	0.35	0.35	0.03	0.28	
LUMO+2	-7.419	0.03	0.58	0.17	0.21	
LUMO+3	-7.212	0.32	0.34	0.12	0.22	
LUMO+4	-6.779	0.04	0.05	0.90	0.02	
LUMO+5	-5.515	0.27	0.13	0.12	0.49	

Table S19 Composition and energy of selected molecular orbitals of $2^{2+}(S=1)$

MO	Energy	Composition			
	(eV)	Ru1	Ru2	L	acac
			α-spin		
HOMO-5	-2.626	0.36	0.34	0.05	0.25
HOMO-4	-2.304	0.19	0.45	0.03	0.33
HOMO-3	-2.211	0.19	0.50	0.04	0.27
HOMO-2	-2.135	0.46	0.19	0.08	0.26
HOMO-1	-2.097	0.49	0.15	0.05	0.31
SOMO	-1.635	0.19	0.19	0.51	0.11
LUMO	-0.550	0.10	0.10	0.75	0.05
LUMO+1	0.531	004	0.03	0.90	0.03
LUMO+2	1.406	005	0.00	0.03	0.92
LUMO+3	1.410	0.05	0.00	0.03	0.92
LUMO+4	1.444	0.00	0.04	0.03	0.92
LUMO+5	1.444	0.00	0.05	0.03	0.92
			β-spin		
HOMO-5	-2.491	0.37	0.34	0.06	0.23
HOMO-4	-2.256	0.39	0.37	0.05	0.19
HOMO-3	-2.113	0.28	0.31	0.18	0.23
HOMO-2	-1.769	0.16	0.52	0.08	0.24
HOMO-1	-1.760	0.40	0.33	0.01	0.27
HOMO	-1.697	0.46	0.07	0.26	0.20
LUMO	-0.241	0.24	0.24	0.39	0.13
LUMO+1	-0.225	0.26	0.26	0.35	0.14
LUMO+2	0.364	0.04	0.04	0.89	0.03
LUMO+3	1.416	0.05	0.00	0.03	0.91
LUMO+4	1.420	0.05	0.00	0.04	0.91
LUMO+5	1.456	0.00	0.05	0.04	0.91

Table S20 Composition and energy of selected molecular orbitals of $2^{-}(S=1/2)$

МО	Energy	Composition			
	(eV)	Ru1	Ru2	L	acac
			α-spin		
HOMO-5	-0.014	0.35	0.36	0.03	0.25
HOMO-4	0.109	0.37	0.38	0.04	0.21
HOMO-3	0.147	0.35	0.35	0.11	0.19
HOMO-2	0.195	0.36	0.35	0.05	0.24
SOMO2	0.626	0.21	0.21	0.48	0.10
SOMO1	0.986	0.14	0.13	0.67	0.06
LUMO	2.591	0.04	0.04	0.88	0.04
LUMO+1	3.651	0.02	0.02	0.04	0.92
LUMO+2	3.661	0.03	0.01	0.04	0.91
LUMO+3	3.664	0.02	0.03	0.03	0.92
LUMO+4	3.667	0.02	0.03	0.02	0.93
LUMO+5	3.931	0.05	0.04	0.03	0.87
			β-spin		
HOMO-5	-0.088	0.23	0.47	0.10	0.20
HOMO-4	0.180	0.38	0.38	0.03	0.22
HOMO-3	0.215	0.39	0.38	0.01	0.22
HOMO-2	0.268	0.36	0.36	0.09	0.19
HOMO-1	0.309	0.39	0.38	0.06	0.17
НОМО	0.466	0.32	0.34	0.16	0.18
LUMO	2.127	0.17	0.17	0.58	0.08
LUMO+1	2.288	0.15	0.15	0.62	0.09
LUMO+2	3.022	0.04	0.04	0.84	0.09
LUMO+3	3.669	0.02	0.02	0.04	0.92
LUMO+4	3.683	0.03	0.03	0.05	0.89
LUMO+5	3.697	0.03	0.03	0.03	0.91

Table S21 Composition and energy of selected molecular orbitals of $2^{2-}(S=1)$

МО	Energy	Composition			
	(eV)	Ru1	Ru2	L	acac
			α-spin		
HOMO-5	2.491	0.39	0.38	0.02	0.21
HOMO-4	2.586	0.40	0.39	0.04	0.18
HOMO-3	2.643	0.35	0.37	0.10	0.17
HOMO-2	2.737	0.36	0.38	0.08	0.18
HOMO-1	3.537	0.15	0.15	0.64	0.06
SOMO	3.568	0.14	0.14	0.65	0.07
LUMO	5.128	0.03	0.03	0.86	0.86
LUMO+1	5.851	0.03	0.02	0.03	0.03
LUMO+2	5.861	0.03	0.02	0.04	0.04
LUMO+3	5.869	0.02	0.03	0.02	0.02
LUMO+4	5.877	0.02	0.03	0.04	0.04
LUMO+5	6.141	0.07	0.06	0.03	0.03
			β-spin		
HOMO-5	2.500	0.40	0.39	0.02	0.19
HOMO-4	2.525	0.40	0.39	0.01	0.20
НОМО-3	2.668	0.39	0.39	0.06	0.16
HOMO-2	2.715	0.37	0.38	0.08	0.17
HOMO-1	2.791	0.36	0.37	0.10	0.17
НОМО	3.840	0.14	0.14	0.66	0.07
LUMO	4.591	0.11	0.11	0.69	0.08
LUMO+1	5.503	0.02	0.02	0.74	0.21
LUMO+2	5.862	0.03	0.02	0.03	0.92
LUMO+3	5.874	0.03	0.03	0.04	0.90
LUMO+4	5.891	0.03	0.04	0.03	0.91
LUMO+5	5.920	0.03	0.04	0.12	0.81

Table S22 Composition and energy of selected molecular orbitals of $2^{3-}(S=1/2)$

Table S23 Experimental and TD-DFT ((U)B3LYP/CPCM/CH₃CN) calculated electronic

transitions for $\mathbf{1}^n$

$\lambda_{\max}^{a,b}$	λ^{b}	Transitions	Character
(expt.) (ε /dm ³	(DFT)		
$mol^{-1}cm^{-1})^{c}$	$(f)^d$		
		1 (<i>S</i> =0)	
		1	1
	2064	$HOMO \rightarrow LUMO(0.62)$	$Ru2(d\pi)/acac(\pi)/Ru3(d\pi) \rightarrow L(\pi^*)/Ru1(d\pi)/Ru3(d\pi)$
	(0.01)		
	1040	$HOMO \rightarrow LUMO + 1(0.57)$	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi)/\operatorname{Ru3}(d\pi) \rightarrow L(\pi^*)/\operatorname{Ru1}(d\pi)$
	(0.01)		$D_{2}(1)/(-()/D_{2}(1)) + I(*)/D_{1}(1)$
1022	939	$HOMO - I \rightarrow LUMO + I(0.46)$	$\operatorname{Ku2}(d\pi)/\operatorname{acac}(\pi)/\operatorname{Ku3}(d\pi) \rightarrow \operatorname{L}(\pi^*)/\operatorname{Ku1}(d\pi)$
(7320)	(0.03)	$HOMO-3 \rightarrow LOMO(0.53)$	$\operatorname{acac}(\pi)/\operatorname{Ru1}(\mathrm{d}\pi) \rightarrow \operatorname{L}(\pi^*)/\operatorname{Ru1}(\mathrm{d}\pi)/\operatorname{Ru3}(\mathrm{d}\pi)$
(7520)	(0.12)		
	775	HOMO $-4 \rightarrow I \cup MO(0.47)$	$\frac{1}{R_{\rm H}^2/R_{\rm H}^2/(d\pi)/2c_{\rm H}^2(\pi)} \int (\pi^*)/R_{\rm H}^2(d\pi)/R_{\rm H}^2(d\pi)$
	(0.11)		
599	668	HOMO-4 \rightarrow LUMO+1(0.64)	$Ru1(d\pi)/Ru3(d\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru1(d\pi)$
(37800)	(0.14)		
	542	HOMO-11 \rightarrow LUMO(0.48)	$acac(\pi) \rightarrow L(\pi^*)/Ru1(d\pi)/Ru3(d\pi)$
	(0.12)	HOMO-2 \rightarrow LUMO+2(0.37)	$Ru2(d\pi)/acac(\pi)/Ru1(d\pi) \rightarrow L(\pi^*)$
325	348	HOMO-20 \rightarrow LUMO+1(0.51)	$L(\pi) \rightarrow L(\pi^*)/\text{Ru1}(d\pi)$
(65300)	(0.34)		
	1	1 (S=1)	
	2933	$HOMO(\beta) \rightarrow LUMO+2(\beta) (0.50)$	$L(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow L(\pi^*)/Ru3(d\pi)/Ru2(d\pi)$
	(0.01)	HOMO-4(β) \rightarrow LUMO+2(β) (0.33)	$acac(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow L(\pi^*)/Ru3(d\pi)/Ru2(d\pi)$
	1463	HOMO-2(β) \rightarrow LUMO(β) (0.46)	$Ru2(d\pi)/L(\pi)/acac(\pi) \rightarrow Ru3(d\pi)/Ru2(d\pi)/acac(\pi^*)$
	(0.05)	HOMO-1(β) \rightarrow LUMO+1(β) (0.29)	$\operatorname{Ru1}(d\pi) \operatorname{acac}(\pi) / \rightarrow \operatorname{Ru1}(d\pi) / L(\pi^*)$
	1232	$HOMO(\beta) \rightarrow LUMO(\beta) (0.47)$	$L(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow Ru3(d\pi)/Ru2(d\pi)/acac(\pi^*)$
	(0.02)	HOMO-2(β) \rightarrow LUMO(β) (0.45)	$Ru2(d\pi)/L(\pi)/acac(\pi) \rightarrow Ru3(d\pi)/Ru2(d\pi)/acac(\pi^*)$
		HOMO(β) \rightarrow LUMO+1(β) (0.42)	$L(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow Ru1(d\pi)/L(\pi^*)/acac(\pi^*)$
	1184	HOMO-1(β) \rightarrow LUMO(β) (0.50)	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ru3}(d\pi)/\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi^*)$
	(0.06)	HOMO-6(β) \rightarrow LUMO(β) (0.42)	$Ru3(d\pi)/acac(\pi) \rightarrow Ru3(d\pi)/Ru2(d\pi)/acac(\pi^*)$
1023	1077	HOMO-1(β) \rightarrow LUMO+2(β) (0.58)	$Ru1(d\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru3(d\pi)/Ru2(d\pi)$
(7320)	(0.01)	HOMO-4(β) \rightarrow LUMO+2(β) (0.32)	$acac(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow L(\pi^*)/Ru3(d\pi)/Ru2(d\pi)$
	986	HOMO(β) \rightarrow LUMO+1(β) (0.66)	$L(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow Ru1(d\pi)/L(\pi^*)/acac(\pi^*)$
	(0.03)		
	859	SOMO2(α) \rightarrow LUMO(α) (0.86)	$Ru1(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
	(0.02)		
	774	SOMO1(α) \rightarrow LUMO+2(α) (0.71)	$ L(\pi) \rightarrow L(\pi^*)$
	(0.06)		

599	580	HOMO-4(α) \rightarrow LUMO(α) (0.70)	$acac(\pi)/Ru1(d\pi) \rightarrow L(\pi^*)$
(37800)	(0.10)	HOMO-7(α) \rightarrow LUMO+2(α) (0.41)	$acac(\pi)/Ru3(d\pi) \rightarrow L(\pi^*)$
325	371	HOMO-15(β) \rightarrow LUMO+1(β) (0.41)	$acac(\pi) \rightarrow Ru1(d\pi)/L(\pi^*)/acac(\pi^*)$
(65300)	(0.04)	HOMO-13(β) \rightarrow LUMO+2(β) (0.34)	$L(\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru3(d\pi)/Ru2(d\pi)$
		HOMO-14(β) \rightarrow LUMO+2(β) (0.34)	$L(\pi)/acac(\pi) \rightarrow Ru1(d\pi)/L(\pi^*)/acac(\pi^*)$
	·	1 ⁺ (S=1/2)	
	2304	HOMO(β) \rightarrow LUMO+3(β)(0.53)	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi)/L(\pi) \rightarrow L(\pi^*)/\operatorname{Ru1}(d\pi)$
	(0.01)		
	1303	$SOMO(\alpha) \rightarrow LUMO(\alpha)(0.74)$	$L(\pi)/acac(\pi) \rightarrow Ru3(d\pi)/L(\pi^*)$
	(0.06)		
	1122	HOMO(β) \rightarrow LUMO+1(β)(0.54)	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi)/L(\pi) \rightarrow L(\pi^*)/\operatorname{Ru2}(d\pi)$
	(0.05)		
	1051	SOMO1(α) \rightarrow LUMO+1(α)(0.53)	$L(\pi)/acac(\pi) \rightarrow L(\pi^*)$
R 00.1	(0.03)		
700sh	646	$\text{SOMO1}(\alpha) \rightarrow \text{LUMO+2}(\alpha)(0.62)$	$L(\pi)/acac(\pi) \rightarrow L(\pi^*)$
	(0.03)		
	620	HOMO-2(α) \rightarrow LUMO+1(α)(0.78)	$\operatorname{acac}(\pi)/\operatorname{Ru1}(\mathrm{d}\pi) \rightarrow L(\pi^*)$
570	(0.03)		$\mathbf{D} (1) / (1) = \mathbf{D} (1) / \mathbf{L} (\mathbf{*})$
3/2 (31250)		$HOMO-5(\alpha) \rightarrow LOMO(\alpha)(0.52)$	$\operatorname{Ku3}(\mathrm{d}\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ku3}(\mathrm{d}\pi)/\operatorname{L}(\pi^{*})$
(31230)	421	HOMO $1(\alpha) \rightarrow UUMO \pm 2(\alpha)(0.20)$	$aaaa(\pi)/Bu1(d\pi) \rightarrow I(\pi^*)$
	(0.04)	HOMO $-1(\alpha) \rightarrow LOMO + 2(\alpha)(0.39)$	$\operatorname{acac}(\pi)/\operatorname{Ku1}(\mathfrak{u}\pi) \rightarrow L(\pi)$
	291	$HOMO = 12(\alpha) \rightarrow LOMO(\alpha)(0.50)$	$\operatorname{acac}(\pi) \to \operatorname{KuS}(\operatorname{d}\pi)/\operatorname{L}(\pi)$
	(0.04)	$HOMO - 5(\beta) \rightarrow LOMO + 3(\beta)(0.42)$	$\operatorname{acac}(\pi)/\operatorname{Ku3}(\operatorname{d}\pi) \rightarrow \operatorname{L}(\pi^{*})$
220	2(0	$HOMO-17(\beta) \rightarrow LOMO(\beta)(0.25)$	$\frac{L(\pi)}{acac(\pi) \rightarrow Ru2(d\pi)/L(\pi^2)}$
329 (62600)	369	HOMO-15(α) \rightarrow LUMO+1(α)(0.50)	$\operatorname{Ku2}(\mathrm{d}\pi)/\operatorname{acac}(\pi)/\mathrm{L}(\pi) \rightarrow \mathrm{L}(\pi^*)$
(02000)	(0.02)	$HOMO-18(\beta) \rightarrow LOMO+2(\beta)(0.20)$	$\operatorname{acac}(\pi)/\operatorname{L}(\pi) \rightarrow \operatorname{L}(\pi^*)/\operatorname{Kul}(\mathrm{d}\pi)$
		12+(S-1)	
	2002	$\frac{I^{-}(3-1)}{HOMO(R) \rightarrow I IIMO(2)(0.51)}$	$2000(\pi)/\text{Bu}^2(d\pi)/\text{I}(\pi) \rightarrow \text{Bu}^2(d\pi)/2000(\pi^*)$
	(0.003)	$HOMO(p) \rightarrow LOMO+2(p)(0.51)$	$\operatorname{acac}(n)/\operatorname{KuS}(un)/\operatorname{L}(n) \rightarrow \operatorname{KuZ}(un)/\operatorname{acac}(n)$
	2491	HOMO(B) \rightarrow I UMO+2(B)(0.55)	$a cac(\pi)/Ru3(d\pi)/I(\pi) \rightarrow Ru1(d\pi)/a cac(\pi^*)$
	(0.003)	nomo(p) /Lomo (2(p)(0.55)	
	1794	$HOMO(B) \rightarrow LUMO+1(B)(0.36)$	$acac(\pi)/Ru3(d\pi)/L(\pi) \rightarrow L(\pi^*)$
	(0.005)	$HOMO-(B) \rightarrow LUMO+1(B)(0.24)$	$a cac(\pi)/Ru1(d\pi) \rightarrow L(\pi^*)$
	1494	$HOMO(B) \rightarrow LUMO(B)(0.90)$	$acac(\pi)/Ru3(d\pi)/L(\pi) \rightarrow L(\pi^*)/Ru3(d\pi)/acac(\pi^*)$
	(0.03)		
	961	HOMO(β) \rightarrow LUMO+1(β)(0.78)	$acac(\pi)/Ru3(d\pi)/L(\pi) \rightarrow L(\pi^*)$
	(0.01)		
	866	HOMO(β) \rightarrow LUMO+3(β)(0.59)	$acac(\pi)/Ru3(d\pi)/L(\pi) \rightarrow Ru1(d\pi)/acac(\pi^*)$
	(0.02)		
654	695	HOMO-3(α) \rightarrow LUMO(α)(0.30)	$acac(\pi) \rightarrow L(\pi^*)/Ru3(d\pi)$
(21870)	(0.11)	HOMO(β) \rightarrow LUMO+4(β)(0.34)	$acac(\pi)/Ru3(d\pi)/L(\pi) \rightarrow L(\pi^*)$
	618	HOMO-6(β) \rightarrow LUMO(β)(0.39)	$acac(\pi)/Ru1(d\pi) \rightarrow L(\pi^*)/Ru3(d\pi)/acac(\pi^*)$
	(0.07)		

584sh	587	HOMO-9(α) \rightarrow LUMO(α)(0.39)	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)/\operatorname{Ru3}(d\pi)$
	(0.04)	HOMO-11(β) \rightarrow LUMO+1(β)(0.26)	$acac(\pi)/Ru3(d\pi)/L(\pi) \rightarrow L(\pi^*)$
	509	HOMO-5(α) \rightarrow LUMO+1(α)(0.47)	$Ru3(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
	(0.02)		
358	374	HOMO-13(β) \rightarrow LUMO+3(β)(0.32)	$acac(\pi)/Ru3(d\pi)/L(\pi) \rightarrow Ru3(d\pi)/acac(\pi^*)$
(48500)	(0.01)	HOMO-14(β) \rightarrow LUMO+2(β)(0.21)	$acac(\pi)/L(\pi) \rightarrow Ru2(d\pi)/acac(\pi^*)$
		$1^{-}(S=1/2)$	
	3198 (0.01)	$SOMO(\alpha) \rightarrow LUMO(\alpha)(0.90)$	$L(\pi) \rightarrow L(\pi^*)$
	2007	HOMO (β) \rightarrow LUMO+1(β)(0.69)	$Ru3(d\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru2(d\pi)/Ru3(d\pi)$
1800	1638	HOMO-2(B) \rightarrow LUMO+1(B)(0.64)	$Ru^{2}(d\pi)/Ru^{3}(d\pi)/acac(\pi) \rightarrow I(\pi^{*})/Ru^{2}(d\pi)/Ru^{3}(d\pi)$
(2500)	(0.02)	HOMO-1(B) \rightarrow LUMO+1(B)(0.58)	$Ru^{2}(d\pi)/acac(\pi) \rightarrow L(\pi^{*})/Ru^{2}(d\pi)/Ru^{3}(d\pi)$
	1433	$HOMO - 2(B) \rightarrow LUMO + 1(B)(0.51)$	$\frac{Ru^{2}(d\pi)}{Ru^{2}(d\pi)} = \frac{L(\pi)}{L(\pi)} \frac{L(\pi)}{Ru^{2}(d\pi)} \frac{L(\pi)}{Ru^{2}(d\pi)} = \frac{L(\pi)}{Ru^{2}(d\pi)} \frac{L(\pi)}{Ru^{2}(d\pi)}$
	(0.03)		
	1142 (0.012)	$HOMO(\beta) \rightarrow LUMO(\beta)(0.63)$	$Ru3(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
	915	HOMO-5(β) \rightarrow LUMO+1(β)(0.48)	$Ru2(d\pi)/Ru3(d\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru2(d\pi)/Ru3(d\pi)$
	(0.11)	HOMO-9(α) \rightarrow LUMO(α)(0.37)	Ru1($d\pi$)/acac(π) \rightarrow L(π^*)
691	666	HOMO-9(α) \rightarrow LUMO(α)(0.73)	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$
(29050)	(0.12)		
561	574	HOMO-2(α) \rightarrow LUMO+1(α)(0.67)	$Ru2(d\pi)/Ru3(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
(15320)	(0.11)		
	463	HOMO-14(β) \rightarrow LUMO(β)(0.36)	$\operatorname{acac}(\pi) \rightarrow L(\pi^*)$
	(0.05)	HOMO-8(β) \rightarrow LUMO+2(β)(0.30)	$Ru1(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
	403	HOMO-21(α) \rightarrow LUMO(α)(0.31)	$L(\pi)/acac(\pi) \rightarrow L(\pi^*)$
	(0.04)	HOMO-1(β) \rightarrow LUMO+7(β)(0.26)	$Ru2(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
370sh	389 (0.03)	HOMO-15(β) \rightarrow LUMO(β)(0.52)	$L(\pi) \rightarrow L(\pi^*)$
		1 ² -(S-1)	
	1500	$\frac{1^{2} (3-1)}{1000}$	$D_{11}(d_{-})/D_{12}(d_{-})/2222(d_{-}) \to I(-*)$
	(0.01)	$HOMO(p) \rightarrow LOMO(p)(0.85)$	$\operatorname{Ku1}(\mathrm{d}\pi)/\operatorname{Ku2}(\mathrm{d}\pi)/\operatorname{acac}(\pi) \rightarrow \mathrm{L}(\pi)$
	1269 (0.02)	SOMO1(α) \rightarrow LUMO(α)(0.70)	$L(\pi) \rightarrow L(\pi^*)$
	1089	$SOMO2(\alpha) \rightarrow LUMO(\alpha)(0.70)$	$L(\pi) \rightarrow L(\pi^*)$
	(0.04)		
976sh	979	SOMO2(α) \rightarrow LUMO(α)(0.66)	$ L(\pi) \rightarrow L(\pi^*) $
011	(0.10)		
811	905	$HOMO(\beta) \rightarrow LUMO+1(\beta)(0.36)$	$\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$
(20400)	(0.24)	$HOMO(\beta) \rightarrow LUMO(\beta)(0.36)$	$Ru1(d\pi)/Ru2(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
	836	$HOMO-5(\beta) \rightarrow LUMO(\beta)(0.53)$	$ \operatorname{Ru3}(d\pi)/\operatorname{acac}(\pi)/\operatorname{Ru1}(d\pi) \rightarrow L(\pi^*)$
	(0.02)	$HOMO-4(\beta) \rightarrow LUMO+2(\beta)(0.46)$	$ \operatorname{Ru1}(d\pi) \rightarrow L(\pi^*)$

	1		
710	647	HOMO-3(α) \rightarrow LUMO(α)(0.74)	$Ru2(d\pi)/Ru3(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
(20250)	(0.04)		
	589	HOMO(β) \rightarrow LUMO+2(β)(0.87)	$\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$
	(0.10)		
	520	SOMO1(α) \rightarrow LUMO+7(α)(0.40)	$L(\pi) \rightarrow L(\pi^*)$
	(0.04)	HOMO-3(β) \rightarrow LUMO+2(β)(0.34)	$Ru3(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
450sh	421	SOMO2(α) \rightarrow LUMO+7(α)(0.56)	$L(\pi) \rightarrow L(\pi^*)$
	(0.12)		
	382	HOMO-5(α) \rightarrow LUMO+3(α)(0.53)	$\operatorname{Ru1}(d\pi) \rightarrow \operatorname{acac}(\pi^*)$
	(0.05)		
338	361	HOMO-12(α) \rightarrow LUMO(α)(0.32)	$acac(\pi) \rightarrow L(\pi^*)$
(46400)	(0.013)	SOMO1(α) \rightarrow LUMO+12(α)(0.21)	$L(\pi) \rightarrow L(\pi^*)/acac(\pi^*)/Ru1(d\pi)$
		HOMO-18(β) \rightarrow LUMO(β)(0.19)	$ L(\pi) \rightarrow L(\pi^*) $

^{*a*}From OTTLE spectroelectrochemistry in CH₃CN/0.1 M Bu₄NPF₆.^{*b*}In nm. ^{*c*}Molar extinction

coefficients in dm³ mol⁻¹ cm⁻¹. ^{*d*}Calculated oscillator strengths.

Table S24 Experimental and TD-DFT ((U)B3LYP/CPCM/CH₃CN) calculated electronic

transitions for 2^n

λ_{\max} a , b	λ^{b}	Transitions	Character
(expt.) (ε /dm ³	(DFT)		
$mol^{-1}cm^{-1})^{c}$	$(f)^d$		
		2 (S=0)	
	1032	HOMO-3 \rightarrow LUMO+1(0.60)	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)/\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi)$
	(0.01)		
1290(sh)	1020	HOMO-1 \rightarrow LUMO+1(0.58)	$Ru1(d\pi)/acac(\pi)/Ru2(d\pi) \rightarrow L(\pi^*)/Ru2(d\pi)/Ru1(d\pi)$
	(0.10)		
	983	$HOMO-4 \rightarrow LUMO(0.55)$	$Ru1(d\pi)/Ru2(d\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru1(d\pi)/Ru2(d\pi)$
	(0.11)	$HOMO-10 \rightarrow LUMO(0.63)$	$Ru1(d\pi)/Ru2(d\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru1(d\pi)/Ru2(d\pi)$
	816		
(72	(0.11)		$P_{1}(1) = (1) P_{1}(1) = I(1) P_{1}(1) = I(1)$
0/3	088	$HOMO-9 \rightarrow LUMO+1(0.64)$	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi)/\operatorname{Ru1}(d\pi) \rightarrow L(\pi^*)/\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)$
(39830)	(0.13)	$HOMO \rightarrow LUMO + 2(0.45)$	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi)/\operatorname{Ru2}(d\pi) \rightarrow L(\pi^*)$
	(0.11)	$HOMO-12 \rightarrow LUMO(0.57)$	$\operatorname{acac}(\pi) \rightarrow L(\pi^*)/\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)$
	617		
	(0.15)		
345	348	HOMO-26 \rightarrow UMO+1(0.54)	$I(\pi) \rightarrow I(\pi^*)/Ru2(d\pi)/Ru1(d\pi)$
(65440)	(0.52)	HOMO-1 \rightarrow LUMO+3(0.36)	$Ru1(d\pi)/acac(\pi)/Ru2(d\pi) \rightarrow acac(\pi^*)$
	()	2.(S=1)	
	3525	$HOMO(B) \rightarrow LUMO(B) (0.60)$	$Ru^{2}(d\pi)/L(\pi)/acac(\pi) \rightarrow Ru^{1}(d\pi)/acac(\pi^{*})$
	(0.006)		
	3277	HOMO(β) \rightarrow LUMO+1(β) (0.50)	$\operatorname{Ru2}(d\pi)/L(\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ru1}(d\pi)/L(\pi^*)$
	(0.007)	HOMO–1(β) \rightarrow LUMO+1(β) (0.41)	$L(\pi)/Ru2(d\pi)/acac(\pi) \rightarrow Ru1(d\pi)/acac(\pi^*)$
	1659	HOMO(β) \rightarrow LUMO(β) (0.58)	$\operatorname{Ru2}(d\pi)/L(\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi^*)$
	(0.03)		
1290(sh)	1220	HOMO-3(β) \rightarrow LUMO(β) (0.47)	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi^*)$
	(0.03)	$HOMO(\beta) \rightarrow LUMO(\beta) (0.41)$	$\operatorname{Ru2}(d\pi)/\operatorname{L}(\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi^*)$
	1075	HOMO(β) \rightarrow LUMO+2(β) (0.43)	$\operatorname{Ru2}(d\pi)/\operatorname{L}(\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{L}(\pi^*)/\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)$
	(0.03)	HOMO-1(β) \rightarrow LUMO+2(β) (0.41)	$L(\pi)/Ru2(d\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru2(d\pi)/Ru1(d\pi)$
	949	HOMO-2(α) \rightarrow LUMO(α) (0.64)	$Ru2(d\pi)/acac(\pi)/L(\pi) \rightarrow L(\pi^*)Ru2(d\pi)/acac(\pi^*)$
	(0.03)	HOMO-3(α) \rightarrow LUMO+2(α) (0.43)	$Ru2(d\pi)/acac(\pi) \rightarrow L(\pi^*)Ru2(d\pi)/acac(\pi^*)$
	816	SOMO1(α) \rightarrow LUMO+1(α) (0.75)	$L(\pi)/Ru2(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
	(0.05)		
	716	HOMO-6(β) \rightarrow LUMO(β) (0.54)	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi^*)$
	(0.06)	HOMO(β) \rightarrow LUMO+3(β) (0.48)	$\operatorname{Ru2}(d\pi)/\operatorname{L}(\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{L}(\pi^*)$
673	604	HOMO–5(β) \rightarrow LUMO+2(β) (0.45)	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)/\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)$
(39850)	(0.02)	HOMO–8(β) \rightarrow LUMO(β) (0.36)	$\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)\operatorname{acac}(\pi) \rightarrow \operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi^*)$

S44

345	454	HOMO-6(β) \rightarrow LUMO+3(β) (0.63)	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$			
(03440)	(0.04)	$2^+(S=1/2)$				
	3348	HOMO-1(β) \rightarrow LUMO(β)(0.52)	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)/\operatorname{Ru1}(d\pi)$			
	2016	$SOMO(\alpha) \rightarrow UMO(\alpha)(0.53)$	$I(\pi)/Bu2(d\pi) \rightarrow Bu2(d\pi)/I(\pi^*)$			
	(0.01)	$HOMO_2(B) \rightarrow I IIMO+2(B)(0.51)$	$Ru^{2}(d\pi)/acac(\pi) \rightarrow Ru^{2}(d\pi)/acac(\pi^{*})$			
1700	1703	HOMO $2(p)$ /LOMO $2(p)(0.51)$	$\frac{Ru2(d\pi)}{acac(\pi)} \times \frac{Ru1(d\pi)}{acac(\pi)}$			
(br. 3230)	(0.002)	$1000-1(p) \rightarrow 1000+2(p)(0.48)$	$\operatorname{Ku2}(\mathfrak{u}\mathfrak{n})/\operatorname{acac}(\mathfrak{n})\to\operatorname{Ku1}(\mathfrak{u}\mathfrak{n})/\operatorname{acac}(\mathfrak{n})$			
	1409	HOMO-2(α) \rightarrow LUMO(α)(0.54)	$Ru2(d\pi)/acac(\pi) \rightarrow Ru2(d\pi)/L(\pi^*)$			
	(0.02)					
	1161	HOMO-2(α) \rightarrow LUMO(α)(0.64)	$Ru2(d\pi)/acac(\pi) \rightarrow Ru2(d\pi)/L(\pi^*)$			
	(0.07)					
	1066	SOMO(α) \rightarrow LUMO+1(α)(0.66)	$L(\pi)/Ru2(d\pi) \rightarrow Ru2(d\pi)/L(\pi^*)$			
	(0.05)					
800(sh)	744	HOMO-3(α) \rightarrow LUMO(α)(0.49)	$\operatorname{Ru2}(d\pi)/L(\pi) \rightarrow \operatorname{Ru2}(d\pi)/L(\pi^*)$			
	(0.09)	HOMO-2(α) \rightarrow LUMO+1(α)(0.44)	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ru2}(d\pi)/\operatorname{L}(\pi^*)$			
	712	HOMO-2(β) \rightarrow LUMO+1(β)(0.76)	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)/\operatorname{Ru1}(d\pi)$			
<u></u>	(0.02)					
617	692	HOMO–5(β) \rightarrow LUMO+2(β)(0.42)	$acac(\pi) \rightarrow Ru1(d\pi)/acac(\pi^*)$			
(32610)	(0.08)	$HOMO-5(\alpha) \rightarrow LUMO(\alpha)(0.40)$	$Ru2(d\pi)/acac(\pi) \rightarrow Ru2(d\pi)/L(\pi^*)$			
	513	HOMO-2(β) \rightarrow LUMO+3(β)(0.46)	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$			
	(0.05)	HOMO-12(α) \rightarrow LUMO+1(α)(0.32)	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ru2}(d\pi)/\operatorname{L}(\pi^*)$			
331	416	HOMO-7(β) \rightarrow LUMO+3(β)(0.61)	$acac(\pi) \rightarrow L(\pi^*)$			
(39630)	(0.01)	$2^{2+}(S-1)$				
		$2^{-}(5^{-1})$				
1186	1301	HOMO(β) \rightarrow LUMO(β)(0.69)	$L(\pi)/Ru1(d\pi)/Ru2(d\pi) \rightarrow L(\pi^*)/Ru2(d\pi)$			
(8870)	(0.11)	SOMO1(α) \rightarrow LUMO+1(α)(0.70)	$L(\pi)/Ru1(d\pi) \rightarrow Ru1(d\pi)/acac(\pi^*)$			
	950					
	(0.02)					
608	709	HOMO-2(β) \rightarrow LUMO(β)(0.61)	$acac(\pi)/Ru1(d\pi)/Ru2(d\pi) \rightarrow L(\pi^*)$			
(22810)	(0.04)	HOMO-3(β) \rightarrow LUMO(β)(0.52)	$acac(\pi)/Ru2(d\pi) \rightarrow L(\pi^*)$			
	650	HOMO-6(β) \rightarrow LUMO (β)(0.48)	$acac(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow L(\pi^*)$			
	(0.02)	HOMO-4(α) \rightarrow LUMO(α)(0.45)	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$			
	616	HOMO-5(α) \rightarrow LUMO(α)(0.52)	$acac(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow L(\pi^*)$			
	(0.03)					
	602	$HOMO-7(\beta) \rightarrow LUMO(\beta)(0.52)$	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi)/\operatorname{Ru2}(d\pi) \rightarrow L(\pi^*)$			
454	(0.06)					
(10240)	455	$HOMO-2(\beta) \rightarrow LOMO+4(\beta)(0.60)$	$\operatorname{acac}(\pi)/\operatorname{Ku2}(\mathrm{d}\pi)/\operatorname{Ku1}(\mathrm{d}\pi)\rightarrow \mathrm{L}(\pi^*)$			
(19340)	<u>(0.04)</u> <u>/</u> 21	$HOMO = 2(\alpha) \rightarrow LUMO + 2(\alpha)(0.25)$	$\frac{1}{2} \frac{1}{2} \frac{1}$			
	$\begin{pmatrix} 4.51\\ (0.02) \end{pmatrix}$	$HOMO A(\alpha) \rightarrow LUMO + 2(\alpha)(0.55)$	$\operatorname{acac}(\pi)/\operatorname{Ku1}(\mathfrak{a}\pi)/\operatorname{Ku2}(\mathfrak{a}\pi) \rightarrow \operatorname{L}(\pi^*)$			
	1 (0.04)	$+10MO^{-4}(\alpha) \rightarrow LOMO^{+2}(\alpha)(0.37)$	$ \operatorname{Kur}(\mathfrak{u}\mathfrak{n})/\operatorname{acac}(\mathfrak{n}) \rightarrow \mathbb{L}(\mathfrak{n})$			

350	410	HOMO-4(β) \rightarrow LUMO+4(β)(0.50)	$acac(\pi)/Ru2(d\pi) \rightarrow L(\pi^*)$
(0)4)0)	(0.02)	$2^{-}(S=1/2)$	
	3298	SOMO \rightarrow LUMO(α)(0.98)	$I(\pi)/Ru1(d\pi)/Ru2(d\pi) \rightarrow I(\pi^*)/Ru2(d\pi)/Ru1(d\pi)$
	(0.03)		
1900	1823	HOMO-2(β) \rightarrow LUMO+1(β)(0.62)	$\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi)/\operatorname{Ru1}(d\pi) \rightarrow L(\pi^*)$
(br, 3960)	(0.04)	HOMO-1(β) \rightarrow LUMO(β)(0.57)	$\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi) \operatorname{acac}(\pi) \rightarrow L(\pi^*)/\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)$
940(sh)	1043	HOMO-3(β) \rightarrow LUMO+1(β)(0.49)	$Ru2(d\pi)/Ru1(d\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru2(d\pi)/Ru1(d\pi)$
	(0.13)	HOMO-11(β) \rightarrow LUMO(β)(0.40)	$\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)/L(\pi) \rightarrow L(\pi^*)/\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)$
743	752	HOMO(β) \rightarrow LUMO+2(β)(0.90)	$\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi)/L(\pi) \rightarrow L(\pi^*)$
(46500)	(0.07)	HOMO-1(β) \rightarrow LUMO+2(β)(0.51)	$\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)/\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)$
	708	HOMO–5(β) \rightarrow LUMO+1(β)(0.61)	$Ru2(d\pi)/Ru1(d\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru2(d\pi)/Ru1(d\pi)$
	(0.08)		
	/04		
420(sh)	(0.00)	$110MO = 2(\alpha) \rightarrow 11MO + 1(\alpha)(0.68)$	$D_{\rm W}2(d-)/2000(-)/D_{\rm W}1(d-) \rightarrow I(-*)$
420(811)	(0.19)	$HOMO-3(\alpha) \rightarrow LOMO+1(\alpha)(0.68)$	$\operatorname{Ku2}(\mathrm{d}\pi)/\operatorname{acac}(\pi)/\operatorname{Ku1}(\mathrm{d}\pi) \rightarrow \operatorname{L}(\pi^*)$
	520	HOMO-16(α) \rightarrow LUMO(α)(0.49)	$acac(\pi) \rightarrow L(\pi^*)$
	(0.09)		
		HOMO-5(α) \rightarrow LUMO+1(α)(0.68)	$\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$
370(sh)	440	HOMO-11(α) \rightarrow LUMO+1(α)(0.62)	$\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$
	(0.10)	SOMO(α) \rightarrow LUMO+2(α)(0.57)	$L(\pi)/Ru1(d\pi)/Ru2(d\pi) \rightarrow acac(\pi^*)$
321	401	SOMO(α) \rightarrow LUMO+10(α)(0.64)	$L(\pi)/Ru1(d\pi)/Ru2(d\pi) \rightarrow acac(\pi^*)$
(61420)	(0.04)		
		2 ^{2–} (<i>S</i> =1)	
	1772	$HOMO(\beta) \rightarrow LUMO(\beta)(0.80)$	$Ru2(d\pi)/Ru1(d\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru2(d\pi)/Ru1(d\pi)$
1100	(0.02)		
1196	1000	SOMOI(α) \rightarrow LUMO(α)(0.62)	$ \begin{array}{c} L(\pi) \rightarrow L(\pi^*) \\ P 2(1) \langle P 1(1) \rangle \\ \end{array} $
(10870)	(0.22)	$HOMO - I(\beta) \rightarrow LOMO(\beta)(0.57)$	$\frac{\mathrm{Ru2}(\mathrm{d}\pi)/\mathrm{Ru1}(\mathrm{d}\pi)/\mathrm{acac}(\pi) \rightarrow \mathrm{L}(\pi^*)/\mathrm{Ru2}(\mathrm{d}\pi)/\mathrm{Ru1}(\mathrm{d}\pi)}{\mathrm{L}(\pi^*)/\mathrm{Ru2}(\mathrm{d}\pi)/\mathrm{Ru1}(\mathrm{d}\pi)}$
	951	HOMO-2(β) \rightarrow LUMO+1(β)(0.68)	$\operatorname{Ku2}(d\pi)/\operatorname{Ku1}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)/\operatorname{Ku2}(d\pi)/\operatorname{Ku1}(d\pi)$
7(0	(0.15)	$HOMO(\beta) \rightarrow LUMO(\beta)(0.57)$	$\frac{\mathrm{Ku2}(\mathrm{d}\pi)/\mathrm{Ku1}(\mathrm{d}\pi)/\mathrm{acac}(\pi) \rightarrow \mathrm{L}(\pi^*)/\mathrm{Ku2}(\mathrm{d}\pi)/\mathrm{Ku1}(\mathrm{d}\pi)}{\mathrm{L}(\pi^*)/$
/00	827	$HOMO-6(\beta) \rightarrow LOMO+1(\beta)(0.57)$	$\operatorname{Ku1}(\mathrm{d}\pi)/\operatorname{L}(\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{L}(\pi^*)/\operatorname{Ku2}(\mathrm{d}\pi)/\operatorname{Ku1}(\mathrm{d}\pi)$
(49380)	678	HOMO $A(\alpha)$ $\lambda UMO(\alpha)(0.66)$	$\operatorname{Pu}(d\pi)/\operatorname{Pu}(d\pi)/\operatorname{pu}(d\pi)$
	(0.08)	$1000-4(\alpha)\rightarrow 1000(\alpha)(0.00)$	$\operatorname{Ku2}(\mathfrak{u},\mathfrak{n})/\operatorname{Ku1}(\mathfrak{u},\mathfrak{n})/\operatorname{acac}(\mathfrak{n}) \to \operatorname{L}(\mathfrak{n})$
	635	HOMO(β) \rightarrow LUMO+2(β)(0.65)	$Ru2(d\pi)/Ru1(d\pi)/acac(\pi) \rightarrow L(\pi^*)$
	(0.09)		
435	552	HOMO-8(α) \rightarrow LUMO(α)(0.71)	$\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$
(36180)	(0.24)		
	425	HOMO–18(β) \rightarrow LUMO (β)(0.51)	$L(\pi)/acac(\pi) \rightarrow L(\pi^*)/Ru2(d\pi)/Ru1(d\pi)$
	(0.03)		
	420	SOMO2(α) \rightarrow LUMO+5(α)(0.51)	$L(\pi)/Ku^2(d\pi)/Ku^1(d\pi) \rightarrow acac(\pi^*)$
	(0.09)		
1	1	1	

327	413	HOMO-1(β) \rightarrow LUMO+8(β) (0.52)	$Ru1(d\pi)/Ru2(d\pi)/acac(\pi) \rightarrow acac(\pi^*)$			
(56650)	(0.01)					
2 ³⁻ (<i>S</i> =1/2)						
	4433 (0.04)	$HOMO(\beta) \rightarrow LUMO(\beta)(0.99)$	$L(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow L(\pi^*)$			
1754 (10860)	1490 (0.003)	HOMO-1(α) \rightarrow LUMO(α)(0.78)	$L(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow L(\pi^*)$			
1386 (7240)	1345 (0.12)	SOMO(α) \rightarrow LUMO(α)(0.97)	$L(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow acac(\pi^*)$			
	1240 (0.04)	HOMO-2(β) \rightarrow LUMO(β)(0.96)	$\operatorname{Ru2}(d\pi)/\operatorname{Ru1}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$			
998 (13960)	1038 (0.10)	HOMO-4(β) \rightarrow LUMO(β)(0.95)	$\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$			
771 (34810)	784 (0.04)	HOMO-11(β) \rightarrow LUMO(β)(0.91)	$\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$			
583(sh)	589 (0.02)	HOMO-10(α) \rightarrow LUMO(α)(0.83)	$\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$			
	579 (0.21)	HOMO-3(β) \rightarrow LUMO+1(β)(0.61)	$\operatorname{Ru1}(d\pi)/\operatorname{Ru2}(d\pi)/\operatorname{acac}(\pi) \rightarrow L(\pi^*)$			
500(sh)	484 (0.02)	HOMO-1(α) \rightarrow LUMO+9(α)(0.57)	$L(\pi)/Ru2(d\pi)/Ru1(d\pi) \rightarrow L(\pi^*)$			
445 (44220)	434 (0.11)	HOMO-12(β) \rightarrow LUMO+1(β)(0.40)	$Ru1(d\pi)/Ru2(d\pi)/L(\pi) \rightarrow L(\pi^*)$			
	433 (0.11)	HOMO-12 (β) \rightarrow LUMO+1(β)(0.38) HOMO-3(β) \rightarrow LUMO+2(β)(0.32)	$Ru1(d\pi)/Ru2(d\pi)/L(\pi) \rightarrow L(\pi^*)$ Ru2(d\pi)/Ru1(d\pi)/acac(\pi) \rightarrow acac(\pi^*)			

^aFrom OTTLE spectroelectrochemistry in CH₃CN/0.1 M Bu₄NPF_{6.} ^bIn nm. ^cMolar extinction

coefficients in dm³ mol⁻¹ cm⁻¹. ^{*d*}Calculated oscillator strengths.

Fig. S1 Experimental and simulated ESI-MS(+) spectra of (a) 1^+ and (b) 2^+ in CH₃CN.

Fig. S2 DFT (B3LYP/LanL2DZ/6-31G*) optimised structures of (a) 1 (S=0) and (b) 2 (S=0).

Fig. S3 EPR spectrum of partially oxidised 1 in CH_3CN/Bu_4NPF_6 at 4 K with half-field signal.

Fig. S4 Experimental (UV-vis-NIR/CH₃CN) and TD-DFT ((U)B3LYP/CPCM/CH₃CN) calculated spectra of 1^n . Oscillator strengths are shown by the black vertical lines; the spectra (red) are convoluted with a Gaussian function having full width at half-maximum of 2000 cm⁻¹.

Fig. S5 Experimental (UV-vis-NIR/CH₃CN) and TD-DFT ((U)B3LYP/CPCM/CH₃CN) calculated spectra of 2^n . Oscillator strengths are shown by the black vertical lines; the spectra (red) are convoluted with a Gaussian function having full width at half-maximum of 2000 cm⁻¹.